CITY OF LIVERMORE # Sewer Master Plan # **FINAL REPORT** **DECEMBER 2017** # (THIS PAGE LEFT BLANK INTENTIONALLY) # **Sewer Master Plan** Prepared for # **City of Livermore** Project No. 438-12-15-05 Project Engineer: Jon Wells, PE 02-28-18 Date 02-28-18 QA/QC Review: Elizabeth T. Drayer, PE Date # Arizona 4505 E Chandler Boulevard, Suite 230 Phoenix, AZ 85048 (602) 337-6110 # Carlsbad 2173 Salk Avenue, Suite 250 Carlsbad, CA 92008 (760) 795-0365 ### Davis 2020 Research Park Drive, Suite 100 Davis, CA 95618 (530) 756-5905 # Eugene 1650 W 11th Ave. Suite 1-A Eugene, OR 97402 (541) 431-1280 # Irvine 6 Venture, Suite 290 Irvine, CA 92618 (949) 517-9060 ### **Pleasanton** 6800 Koll Center Parkway, Suite 150 Pleasanton, CA 94566 (925) 426-2580 ### Portland 4949 Meadows Road, Suite 125 Lake Oswego, OR 97035 (503) 451-4500 ### Sacramento 2725 Riverside Boulevard, Suite 5 Sacramento, CA 95818 (916) 504-4915 # Santa Rosa 2235 Mercury Way, Suite 105 Santa Rosa, CA 95407 (707) 543-8506 # Sunnyvale 1250 Oakmead Parkway, Suite 210 Sunnyvale, CA 94085 (408) 451-8453 # Walnut Creek 1777 Botelho Drive, Suite 240 Walnut Creek, CA 94596 (925) 949-5800 | Executive | Summary | |-----------|---------| |-----------|---------| | ES.1 Overview and Need for Sewer Master Plan Update | ES-1 | |--|-------------------| | ES.2 Sewer Master Plan Goals and Objectives | ES-1 | | ES.3 Existing and Projected Sewer Flows | ES-2 | | ES.4 Review and Confirmation of Design and Performance Criteria | ES-4 | | ES.5 Hydraulic Model Update and Validation | | | ES.6 Operational Analysis | | | ES.7 Recommended Collection System Improvements | ES-4 | | ES.8 Opinion of Probable Project Costs | ES-6 | | ES.9 Considerations for Next Sewer Master Plan Update | ES-7 | | Chapter 1. Introduction | | | 1.1 Overview and Need for Sewer Master Plan | 1-1 | | 1.2 Sewer System Master Plan Objectives and Tasks | 1-1 | | 1.3 Authorization | 1-2 | | 1.4 Report Organization | 1-2 | | 1.5 Related Plans and Reports | 1-3 | | Chapter 2. Existing System Description | | | 2.1 Sewer Service Area 2.1.1 Service Area Description 2.1.2 Service Area Population 2.1.3 Sewer Service Area Land Use | 2-1
2-1
2-2 | | 2.2 Existing Collection System | | | 2.2.2 Existing Force Mains | | | 2.2.3 Existing Lift Stations | | | 2.2.3.1 El Charro Lift Station | | | 2.2.3.3 College Lift Station | | | 2.2.3.4 Rickenbacker Lift Station | | | 2.3 Wastewater Treatment and Disposal | 2-7 | | Chapter 3. Service Area Sewer Flows | | | 3.1 Sewer Flow Component Overview | 3-1 | | 3.1.1 Average Dry Weather Flow | 3-1 | | 3.1.2 Peak Dry Weather Flow | | | 3.1.3 Peak Wet Weather Flow | | i | 3.2 Design Flow Development | 3-2 | |--|------| | 3.2.1 ADWF Development | 3-2 | | 3.2.1.1 Historical ADWF | 3-2 | | 3.2.1.2 Existing Rebounded ADWF | 3-4 | | 3.2.1.2.1 Historical Water Billing Data Processing | 3-5 | | 3.2.1.2.2 Water Demand Rebound | 3-5 | | 3.2.1.2.3 Return-to-Sewer Ratio Shift | | | 3.2.1.2.4 Summary of Existing Rebounded ADWF | 3-6 | | 3.2.1.3 Projected Build-Out ADWF | 3-6 | | 3.2.2 PDWF Development | 3-13 | | 3.2.2.1 Historical PDWF | 3-13 | | 3.2.2.2 Projected PDWF | 3-13 | | 3.2.3 PWWF Development | 3-14 | | 3.2.3.1 Historical PWWF | | | 3.2.3.2 Projected PWWF | 3-14 | | Chapter 4. Collection System Design and Performance Criteria | 4.4 | | 4.1 Design Flow Factors | | | 4.1.2 PDWF Design Factors | | | 4.1.3 PWWF Design Factors | | | - | | | 4.2 Gravity Main Performance Criteria | | | 4.2.1 Capacity Calculation | | | 4.2.2 Manning Coefficient (n) | | | 4.2.3 Capacity Performance Criteria | | | 4.2.4 Surcharge Performance Criteria | 4-4 | | 4.3 Lift Station Performance Criteria | 4-4 | | 4.3.1 Lift Station Holding Criteria | 4-4 | | 4.3.2 Lift Station Capacity Criteria | 4-4 | | 4.4 Force Main Performance Criteria | 4-4 | | 4.4.1 Head Loss | | | 4.4.2 Minor Losses | | | | - | | Chapter 5. Hydraulic Model Update and Capacity Evaluation | | | | F 4 | | 5.1 Model Description | 5-1 | | 5.2 Hydraulic Model Update | | | 5.2.1 Model Network Revisions | | | 5.2.2 Hydraulic Model Flow Updates | | | 5.2.2.1 ADWF Updates | | | 5.2.2.2 PDWF Updates | | | 5.2.2.3 PWWF Updates | 5-5 | | 5.3 Existing Capacity Evaluation | 5-5 | | 5.3.1 Existing Gravity Main Hydraulic Evaluation | | | 5.3.2 Existing Lift Station Hydraulic Evaluation | | | 5.3.3 Existing Force Main Hydraulic Evaluation | | | 5.4 Buildout Capacity Evaluation | | | 5.4.1 Buildout Gravity Main Hydraulic Evaluation | | | 5.4.2 Buildout Gravity Main Hydraulic Evaluation | | | 5.4.3 Buildout Ent Station Hydraulic Evaluation | | | 0.7.0 Dulidout i oroc ivialit i fydraulio Evaluation | | | Chapter 6. Operational Analysis | | |--|------| | 6.1 Gravity Main Operational Analysis | 6-1 | | 6.1.1 Gravity Main Age Isolation | | | 6.1.2 Potable Water Source Isolation | | | 6.1.4 Recommended Flow Monitoring Program | | | 6.2 Lift Station Operational Analysis | 6-4 | | Chapter 7. Prioritized Capital Improvement Program | | | 7.1 Recommended Sewer Collection System Capital Improvement Program | 7-1 | | 7.1.1 Existing Sewer Collection System Capital Improvement Program | | | 7.1.2 Future Sewer Collection System Capital Improvement Program | | | 7.1.3 Additional Improvements to Serve the Isabel Neighborhood Plan | | | 7.2 Capital Improvement Program Costs and Implementation | | | 7.2.1 Cost Assumptions | 7-6 | | 7.2.2 Opinion of Probable Project Cost | 7-6 | | List of Tables | | | Table ES-1. Sewer Master Plan Objectives | ES-2 | | Table ES-2. Projected Collection System Design Flows | ES-3 | | Table ES-3. Opinion of Probable Project Costs for Recommended Collection System Capi
Improvements by Project Type | | | Table 2-1. Historical Sewer Service Area Population (2000-2015) | 2-2 | | Table 2-2. Sewer Service Area Existing Land Use | | | Table 2-3. Livermore Existing Gravity Mains by Diameter | | | Table 2-4. Livermore Existing Gravity Mains by Pipeline Material | | | Table 2-5. Lift Station Capacity | | | Table 3-1. Historical ADWF at WRP | | | Table 3-2. Water Demand and Wastewater Generation Comparison | | | Table 3-3. ADWF Factors History and Projection per Land Use | | | Table 3-4. Summary of Existing Rebounded ADWF | | | Table 3-5. ADWF Projections for Reasonably Foreseeable Development Projects in City Municipal Area | | | Table 3-6. ADWF Projections for Reasonably Foreseeable Development Projects in Cal Water Service Area | | | Table 3-7. ADWF Projections for Vacant Areas | | | Table 3-8. ADWF Point Sources | | | Table 3-9. ADWF History and Projection Summary | | | Table 3-10. Historical PDWF at WRP | | | | | | Table 3-11. Projected PDWF at WRP | 3-13 | | | Table 3-12. Existing RDII Generation | 3-14 | |-----|---|-------| | | Table 3-13. Buildout RDII Generation | 3-15 | | | Table 3-14. Projected PWWF (Design Flows) | 3-15 | | | Table 4-1. Design ADWF Generation Factors | 4-2 | | | Table 5-1. Load Column Description in the Hydraulic Model | 5-4 | | | Table 5-2. Gravity Mains Not Meeting Performance Criteria Under Existing Rebounded Flow Conditions | 5-7 | | | Table 5-3. Existing Rebounded Lift Station Capacity Results | 5-9 | | | Table 5-4. Gravity Mains Not Meeting Performance Criteria Under Buildout Conditions | 5-10 | | | Table 5-5. Buildout Lift Station Capacity Results | 5-12 | | | Table 7-1. Summary of Recommended Capital Improvement Projects and Estimated Cost | 7-2 | | | Table 7-2. Opinion of Probable Project Costs for Recommended Collection System Capital Improvements by Project Type | 7-6 | | Lis | et of Figures | | | | Figure ES-1. Existing Collection System | ES-9 | | | Figure ES-2. Recommended Capital Improvement Program Existing Rebounded PWWF | ES-10 | | | Figure ES-3. Recommended Capital Improvement Program Buildout PWWF | ES-11 | | | Figure ES-4. INP Hydraulic Evaluation Results | ES-12 | | | Figure 2-1. Sewer Service Boundary and Potable Water Providers | 2-8 | | | Figure 2-2. Existing Land Uses | 2-9 | | | Figure 2-3. Existing Collection System | 2-10 | | | Figure 2-4. Gravity Main Diameter | 2-11 | | | Figure 2-5. Gravity Main Material | 2-12 | | | Figure 2-6. Pump Station Tributary Area | 2-13 | | | Figure 3-1. Wastewater Components for Typical PWWF Conditions | 3-2 | | | Figure 3-2. Planning and Vacant Parcels – City Municipal Area | 3-16 | | | Figure 3-3. Planning and Vacant Parcels – Cal Water Municipal Area | 3-17 | | | Figure 3-4. Historic PDWF Water Reclamation Plant | 3-18 | | | Figure 4-1. Residential Design Diurnal Pattern | 4-6 | | | Figure 4-2. Industrial Design Diurnal Pattern | 4-7 | | | Figure 4-3. Commercial Design Diurnal Pattern | 4-8 | | | Figure 5-1. Updated Model Network | 5-14 | | | Figure 5-2. Hydraulic Evaluation Results - Existing Rebounded PWWF | 5-15 | | | Figure 5-3. Hydraulic Evaluation Results - Buildout PWWF | 5-16 | | | Figure 6-1. Gravity Main Installation Decade | 6-5 | | | Figure 6-2. Recommended Flow Monitoring Plan | 6-6 | | Figure 7-1. Recommended Capital Improvement Program Existing Rebounded PWWF | 7-8 | |---|------| | Figure 7-2. Recommended Capital Improvement Program Buildout PWWF | 7-9 | | Figure 7-3. INP Hydraulic Evaluation Results | 7-10 | # List of Acronyms and Abbreviations 2015 UWMP City of Livermore 2015 Urban Water Management Plan ABS Acrylonitrile butadiene styrene ADWF Average Dry Weather Flow BART Bay Area Rapid Transit BSF Base Sanitary Flow CalWater California Water Service Company CCI Construction Cost Index cfs Cubic Feet Per Second CIP Capital Improvement Program CIPP Cured-in-Place Pipe
City City of Livermore DI Ductile Iron EBDA East Bay Dischargers Authority ENR Engineering News Record fps Feet Per Second ft Feet GIS Geographic Information System gpcd Gallons Per Capita Per Day gpd Gallons Per Daygpm Gallon Per MinuteGWI Groundwater infiltrationHDPE High-Density Polyethylene I-580 Interstate 580 ID Identifier in Inches INP Isabel Neighborhood Plan LAVWMA Livermore Amador Valley Water Management Agency LLNL Lawrence Livermore National Laboratory mgd Million Gallons Per Day PDWF Peak Dry Weather Flow PVC Polyvinyl Chloride PWWF Peak Wet Weather Flow q Design FlowrateQ Full Pipe Flow q/Q Ratio RDII Rainfall Dependent Inflow and Infiltration SCADA Supervisory Control and Data Acquisition SFPUC San Francisco Public Utilities Commission SNL Sandia National Laboratory TRUSS Thermoplastic PVC UGB Urban Growth Boundary UV Ultraviolet VCP Vitrified Clay Pipe West Yost West Yost Associates WRP Water Reclamation Plant # List of Appendices Appendix A: Collection System Hydraulic Model Modeler's Notebook Appendix B: Isabel Neighborhood Plan Sewer System Evaluation Project Appendix C: Cost Estimating Assumptions ### **ES.1 OVERVIEW AND NEED FOR SEWER MASTER PLAN UPDATE** The City of Livermore (City) sewer collection system serves the incorporated limits of the City, which includes a population of approximately 87,000 people in eastern portion of Alameda County. In addition to the area within the City limits, the sewer service area includes small areas that are outside of the City limits but within the City's Urban Growth Boundary (UGB), as well as the Ruby Hill portion of the City of Pleasanton. While the City is continually planning and designing collection system improvements to ensure a safe and reliable system, a comprehensive review of the City's collection system facilities has not been completed since 2004. With changes in customer's water use in response to recent on-going drought conditions, and corresponding changes in wastewater flows, and several new development projects proposed throughout the City's sewer service area, there is a need for an updated Sewer Master Plan to evaluate the City's collection system's ability to meet existing and projected future flows and identify improvements needed to address system deficiencies. The City's existing collection system and sewer service area can be seen on Figure ES-1. # **ES.2 SEWER MASTER PLAN GOALS AND OBJECTIVES** The objective of this Sewer Master Plan is to clearly define the City's long-term collection system infrastructure capacity needs, and to develop a plan that will provide the flexibility and system reliability that the City needs to accommodate changing future capacity needs. Specific objectives are listed in Table ES-1 with references to specific chapters and appendices of this Sewer Master Plan. It is important to note that the focus of this Sewer Master Plan is to recommend capacity-related improvement projects for the City's sewer system. It is not the intent for this Sewer Master Plan to be the sole source of all recommended sewer system projects for inclusion in the City's Capital Improvement Plan (CIP). Other sources include the Water Resource Division's asset management program (which focuses on the renewal or replacement of sewer system assets based on age and condition), regulations and code compliance, operations and maintenance staff input, and coordination with other roadway improvements. The City utilizes and coordinates all sources in the development of the City's overall CIP for the sewer system. The development of this Sewer Master Plan included working closely with staff from the City's Water Resources Division, Engineering Division, and Planning Division to evaluate wastewater flow trends and future development plans and their impact on projected future wastewater flows and future collection system infrastructure needs. The update of the City's Sewer Master Plan will guide the City's implementation of required collection system improvement projects. | Table ES-1. Sewer Master Plan Objectives | | | | | |---|---|--|--|--| | Sewer Master Plan Objective | Report Location | | | | | Evaluate and review available information on the existing wastewater collection system that defines its current capabilities | Chapter 2 Existing System Description | | | | | Confirm the City's standard collection system performance criteria and re-evaluate and better define specific collection system performance criteria that establish the foundation of the City's wastewater collection system planning | Chapter 4 Collection System Design and Performance
Criteria | | | | | Establish existing wastewater flow factors, peaking factors and Rainfall Dependent Inflow and Infiltration factors so that Average Dry Weather Flow, Peak Dry Weather Flow, and Peak Wet Weather Flow values for existing and for buildout (based on the City's adopted General Plan) conditions can be developed. | Chapter 3 Service Area Sewer Flows | | | | | Update and validate the City's existing H2OMAP Sewer wastewater collection system hydraulic model to accurately reflect the existing collection system configuration and have a 1:1 correlation with the City's wastewater system Geographic Information System (GIS), and to be used as a planning tool to evaluate the need for future collection system improvements | Chapter 5 Hydraulic Model Update and Capacity Evaluation Refer to Appendix A for information on the update and validation of the City's wastewater collection system hydraulic model | | | | | Use the updated hydraulic model of the City's collection system to analyze and identify improvements that provide appropriate capacity for the existing system and future system at buildout design flows | Chapter 5 Hydraulic Model Update and Capacity Evaluation Refer to Appendix B for an evaluation of the potential impacts of the proposed Isabel Neighborhood Plan, including an extension of BART to Isabel Avenue, on the City's recommended collection system improvements | | | | | Recommend future programs to better evaluate the condition and day-to-day operation of the City's collection system. | Chapter 6 Operational Analysis | | | | | Develop a plan that identifies and prioritizes required wastewater collection system improvements to meet estimated existing rebounded and buildout flows | Chapter 7 Prioritized Capital Improvement Program | | | | # **ES.3 EXISTING AND PROJECTED SEWER FLOWS** In this Sewer Master Plan, the capacity of the City's collection system is evaluated versus design sewer flow requirements under existing and buildout conditions. As is typical, the design flow for the City's collection system is defined to be the Peak Wet Weather Flow (PWWF) for existing and future conditions in the collection system. PWWF is developed using Average Dry Weather Flow (ADWF), Peak Dry Weather Flow (PDWF), and Rainfall Dependent Infiltration and Inflow (RDII) components. A summary of the projected design flows for Existing Rebounded and Buildout conditions developed in this Sewer Master Plan are summarized in Table ES-2, and are described below. | Year | ADWF, mgd | PDWF, mgd | RDII, mgd | PWWF, mgd | Wet Weather
Peak Factor | |-------------------------------|-----------|-----------|-----------|-----------|----------------------------| | Existing Rebounded | 6.712 | 9.058 | 8.61 | 17.66 | 2.63 | | Buildout | 8.14 | 10.99 | 15.10 | 26.09 | 3.20 | | mgd = million gallons per day | | | | | | Between the years 2013 to 2016, California experienced a severe three-year drought. This drought significantly impacted water demand patterns and sanitary sewer generation patterns throughout the state, and has made it difficult to establish a true "baseline" water demand or sewer flow for this time period. This difficulty in establishing a baseline complicates the development of reliable future projections. The City's Water Master Plan invested considerable effort into studying the water demand patterns during the drought to develop an existing baseline. The Water Master Plan established that demands in 2013 (high point of demand during the drought) and 2015 (low point of demand during the drought) were critical to development of the baseline demand. Because water demand that is utilized indoors drives sanitary sewer generation, existing ADWF was developed using 2013 and 2015 data, consistent with the development of demands in the City's Water Master Plan. Building upon the water demand analysis performed for the Water Master Plan, a baseline ADWF independent of drought impacts was calculated for this Sewer Master Plan projected by applying a Return-to-Sewer ratio to average day water demands. This non-drought baseline for existing flows is identified as the existing rebounded ADWF, analogous to the existing rebounded average dry demand projected for the Water Master Plan. Buildout ADWF projections were developed using the baseline existing rebounded ADWF projections as a starting point. Projected flows from reasonably foreseeable development projects, as identified by City planning staff, were added to the existing rebounded ADWF projections, in addition to projected flows from other vacant areas. Historical PDWF was determined based on daily hydrographs for flows entering the City's Water Reclamation Plant (WRP) during non-precipitation days in 2013 and 2015. A dry weather peaking
factor of 1.35 was observed, and since the dry weather peaking factor is not expected to vary significantly in the future, that same factor was used to project future PDWF. Because of the lack of wet weather flow monitoring data and because of the few wet weather events captured in flow data at the WRP, it was most appropriate to retain the Rainfall Dependent Inflow and Infiltration (RDII) factor of 800 gallons per acre per day (gpad) established for the 2004 Master Plan. However, because of evidence of increased winter flows seen in the billing data for the Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratory (SNL) areas, reduced RDII factors were established for these areas, whereas the 2004 Master Plan excluded the RDII calculations entirely. RDII factors of existing infrastructure at buildout conditions was also increased to 1,250 gpad to account for aging. It is estimated that these RDII values correspond to a 5-year return frequency storm. A priority recommendation of this Sewer Master Plan will be implementation of a comprehensive flow monitoring program to establish RDII characteristics by basin and sub-basin throughout the City's sewer service area. A completion description of the development of the ADWF, PDWF and PWWF for the City's collection system is described in Chapter 3. w\c\438\12-15-05\wp\sewer\072216_0ES # **ES.4 REVIEW AND CONFIRMATION OF DESIGN AND PERFORMANCE CRITERIA** This Sewer Master Plan utilizes existing rebounded and future design flows described above to evaluate the capacity requirements of the City's collection system. Design flow factors and the performance criteria by which the collection system performance is evaluated is described in Chapter 4. The performance criteria address the gravity mains, lift stations, and force mains. Where the performance evaluation identifies recommended improvements, these improvements shall be designed with the goal of being in accordance with the City's current facility planning guidelines, standard specifications and details, and development plan check and proceeding manual. # **ES.5 HYDRAULIC MODEL UPDATE AND VALIDATION** The hydraulic model developed for the 2004 Master Plan was a skeletonized model that contained only the trunk gravity mains from the City's collection system. Small diameter gravity mains were excluded from the hydraulic model. For this Sewer Master Plan, the City desired a more comprehensive evaluation of collection system capacity, including the small diameter gravity mains that predominate the collection system. Further, the City desired that a clear link be developed between individual parcel flows and their connection to the collection system. Such a link requires that all gravity mains, regardless of diameter, be included in the hydraulic model. Therefore, as part of this Sewer Master Plan, the hydraulic model has been updated to include a network that contains all collection system gravity mains. As described in Chapter 5, a gap analysis was performed to identify gaps in the existing GIS information (such as invert elevations) that were needed for the purposes of modeling. For these gaps, modeling assumptions were made and documented in Appendix A. It is a recommendation of this Sewer Master Plan that in the future the City perform field verification of the higher priority gap analysis findings to improve the accuracy of the model. Use of the City's updated model was then used for the evaluation of the City's collection system under existing and buildout conditions and to identify deficiencies as described in Chapter 5. ### **ES.6 OPERATIONAL ANALYSIS** Maintaining the condition of the collection system and providing effective operation of the collection system are equally important to providing adequate hydraulic capacity in meeting the needs of the City and its customers. Chapter 6 provides recommendations for additional flow monitors as part of the City's overall flow monitoring program, and more detailed evaluations to assess performance of the City's lift stations. # **ES.7 RECOMMENDED COLLECTION SYSTEM IMPROVEMENTS** Recommended improvements were developed for existing and buildout conditions as part of the Sewer Master Plan. # **ES.7.1 Existing and Buildout Collection System Evaluations** The City's collection system was evaluated to assess the system's ability to meet the recommended collection system planning and design criteria under existing rebounded and buildout flow conditions and to identify needed improvements. The findings and recommendations of these evaluations are summarized below. # **Executive Summary** Chapter 5 of this Sewer Master Plan presents the evaluation of the City's existing and buildout collection system, and its ability to meet recommended collection system planning criteria under existing rebounded and buildout flow conditions. Collection system capacity for gravity mains, lift stations, and force mains was assessed with respect to the system's performance under the existing rebounded and buildout PWWF design flow conditions described in Chapter 3, using the design and performance criteria described in Chapter 4. Recommended improvements are provided in Chapter 7 and a summary of the results is as follows: # • Gravity Mains: - Under existing rebounded flow conditions, gravity mains in the City's collection system exceed the performance criteria in some locations. The recommended improvement projects are displayed on Figure ES-2. - Under buildout flow conditions, gravity mains in the City's collection system exceed the performance criteria in some locations. The recommended improvement projects are displayed on Figure ES-3. # • Lift Stations: - Under existing rebounded flow conditions, the hydraulic model indicates that all of the collection system lift stations currently have sufficient firm capacity. - Under buildout flow conditions, the hydraulic model indicates that the firm capacity of the Airport Lift Station has a deficiency of 335 gallons per minute (gpm). The City's other lift stations have sufficient capacity to meet buildout flow conditions. # • Force Mains: - Under existing rebounded flow conditions, there are no force mains that fail to meet the City's performance criteria. - Under buildout flow conditions, the 8-inch diameter portion of the Airport Lift Station Force Main requires upsizing due to the recommended increased capacity of the lift station. It should be noted that the hydraulic analysis of the City's gravity mains identifies every incidence of the design and performance criteria being exceeded. In the large majority of these incidences, the performance criteria are exceeded in an isolated gravity main that has a low or even flat slope. In most cases, these low and flat slope gravity mains are small diameter gravity mains that were brought into the model for the first time as part of this Sewer Master Plan, and which have poorly verified invert elevation data. It is anticipated that these identified gravity mains do not represent true hydraulic bottlenecks in the collection system, and therefore have not been included in this Sewer Master Plan as recommended projects. However, it is recommended that in the future the City perform field verification of these isolated mains so their true capacity can be determined and the assumption of no hydraulic bottleneck confirmed. # ES.7.2 Collection System Evaluation for the Isabel Neighborhood Plan The Isabel Neighborhood Plan (INP) is a proposed development area located in the northwest portion of the City which is contingent upon the extension of Bay Area Rapid Transit (BART) to this location. The INP planning area is entirely within the City's urban growth boundary and lies entirely within the City's sewer service area. Proposed land uses for the INP are different from those currently included in the City's General Plan, and evaluated in this Sewer Master Plan. Sewer flows have been projected for the proposed INP land uses to determine if the additional sewer flows associated with the INP trigger additional improvements to the City's collection system, beyond those improvements identified in this Sewer Master Plan under buildout sewer flow conditions. The projected ADWF for the INP planning area assuming the INP land uses is 714,000 gallons per day (gpd), which is 195,000 gpd (or about 37 percent) higher than the ADWF for the INP planning area assuming current General Plan land uses. Existing collection system infrastructure is in place within the INP planning area to serve the existing developed areas. Based on the sewer flow projections for the INP land uses, the following additional collection system improvements would be required to serve future planned development under the proposed INP: - Additional gravity main improvements (beyond those required for buildout conditions); and - Additional capacity required at the City's Airport Lift Station (deficiency in firm capacity increases from 335 gpm under buildout conditions to 365 gpm with the INP included). The additional improvements required for potential INP flows are displayed on Figure ES-4. Additional information on the INP proposed land uses, projected sewer flows, and collection system evaluation is provided in *Appendix B Isabel Neighborhood Plan Analysis*. ### **ES.8 OPINION OF PROBABLE PROJECT COSTS** Chapter 7 of this Sewer Master Plan provides a summary of recommended collection system improvements, along with an opinion of probable project costs for the recommended collection system improvements to support the City's existing and buildout wastewater flows. The total opinion of probable project costs for collection system improvements to support the City's existing and buildout sewer flows is \$8,055,000. Of this amount, approximately \$1,911,000 is required to address existing system deficiencies, and approximately \$6,144,000 is required to support future planned growth. The potential INP flows would add approximately \$540,000
in probable construction costs to the total project costs. Table ES-3 summarizes the opinion of probable project costs by project type. It should be noted that any in-tract pipelines required to be installed as part of new development projects will be fully funded and installed by the project proponents. Therefore, these facilities and corresponding costs are not included. Table ES-3. Opinion of Probable Project Costs for Recommended Collection System Capital Improvements by Project Type^(a,b) | Collection System Improvement Type | Existing
(Near-Term) | Buildout | Total | |------------------------------------|-------------------------|-------------|-------------| | Gravity Main Improvements | \$1,636,000 | \$4,260,000 | \$5,896,000 | | Lift Station Improvements | ı | \$1,884,000 | \$1,844,000 | | Collection System Planning Studies | \$275,000 | - | \$275,000 | | Opinion of Probable Project Costs | \$1,911,000 | \$6,144,000 | \$8,055,000 | ⁽a) Costs shown are based on the March 2017 SF ENR CCI of 11609. Existing collection system improvements to address existing system deficiencies should be completed as funding permits. The construction of capital improvements for the buildout demand conditions should be coordinated with the proposed schedules of new development to ensure that required collection system infrastructure will be in place as needed to serve future customers. ### **ES.9 CONSIDERATIONS FOR NEXT SEWER MASTER PLAN UPDATE** The following lists additional recommendations and observations related to future planning and operations of the City's collection system: - The analysis in this Sewer Master Plan was based on the City's collection system facilities as of January 2017. The next Sewer Master Plan update should address and incorporate any changes to the City's service area zone boundaries and any facility changes (i.e., equipment, pipeline modifications) and update the City's collection system hydraulic model accordingly. - In this Sewer Master Plan, Average Dry Weather Flow (ADWF) factors were calculated or assumed for the various land uses. While it should be understood that ADWF factors are average values, and that the sewer flows for each parcel with a particular land use will likely not match with the ADWF factor exactly, it is recommended that the City monitor actual water usage by customers to identify large increases in water demand, and hence corresponding sewer flows, that may affect the collection system. In particular, ADWF factors should be confirmed for the following land uses: - Residential (UH-4): ADWF factors in this Sewer Master Plan are much lower than in the 2004 Sewer Master Plan. Actual unit water use for UH-4 land uses should be compared to the factors used in the Water Master Plan to determine if the estimated ADWF factors are appropriate. - Point Demands: Actual sewer flows for Ruby Hills should be monitored to determine if estimated sewer flows are appropriate. b) Total Project Costs include the Estimated Construction Costs which include an estimating contingency of 30 percent of the Base Construction Cost, and Design and Construction Period Services equal to 50 percent of the Estimated Construction Costs. - Commercial/Business and Commercial Park/Industrial: ADWF factors in this Sewer Master Plan are much lower than in the 2004 Sewer Master Plan. Actual unit water use for these land uses should be compared to the factors used in the Water Master Plan to determine if the estimated ADWF factors are appropriate. - It is recommended that the City monitor development proposals to confirm and, if needed, update planning assumptions for reasonably foreseeable development projects, including both extent and timing. - One of the projects identified in this Sewer Master Plan is the installation of permanent flow monitoring locations in the collection system. It is recommended that the City use data from these locations to better establish RDII and PDWF factors, and assess PWWF for 5-, 10- and 20-year storms. Comparing data both pre- and post-major rehabilitation projects will help the City to determine if rehabilitation projects are effective in managing RDII. The flow monitoring data can also be used to get more accurate estimations of return-to-sewer ratios based on land use. - It is recommended that the City conduct a Lift Station Operational Assessment. This study will consist of operational evaluations to identify the condition and performance characteristics of the City's four lift stations. The study will include a report that prioritizes an improvement plan based upon the evaluations. - It is recommended that the City perform field verifications of infrastructure identified in the Gap Analysis described in Chapter 5, as well as for gravity main segments that were identified as low slope during the hydraulic modeling. Field verifications should be incorporated into the hydraulic model for the next Sewer Master Plan update. # Symbology WRP Water Reclamation Plant ■ ■ ■ Force Main — Gravity Main Sewer Service Boundary # Figure ES-1 Existing Collection System City of Livermore Sewer Master Plan (THIS PAGE LEFT BLANK INTENTIONALLY) # Symbology WRP Water Reclamation Plant Ls Lift Station — Replace Existing Gravity Main — Gravity Main --- Force Main Sewer Service Boundary # Figure ES-2 Recommended Capital Improvement Program Existing Rebounded PWWF > City of Livermore Sewer Master Plan (THIS PAGE LEFT BLANK INTENTIONALLY) # Symbology WRP Water Reclamation Plant Replace Existing Lift Station Ls Lift Station --- Replace Existing Force Main - - • Force Main Replace Existing Gravity Main — Gravity Main Sewer Service Boundary Figure ES-3 Recommended Capital Improvement Program Buildout PWWF > City of Livermore Sewer Master Plan (THIS PAGE LEFT BLANK INTENTIONALLY) # Symbology WRP Water Reclamation Plant # Lift Station Capacity Results - LS No Capacity Deficiency - Capacity Deficiency Under Both General Plan Build-Out and INP Scenarios - Manho # **Gravity Main Capacity Results** - --- No Deficiency - Deficiency Under INP Scenario Only - Deficiency Under Both General Plan Build-out and INP Scenarios - -- Force Main - Sewer Service Boundary ### Note: 1. Labels shown are upstream and downstream manholes' ID of gravity main capacity deficiencies. # Figure ES-4 INP Hydraulic Evaluation Results City of Livermore Sewer Master PLan (THIS PAGE LEFT BLANK INTENTIONALLY) # Introduction ### 1.1 OVERVIEW AND NEED FOR SEWER MASTER PLAN The City of Livermore (City) sewer collection system serves the incorporated limits of the City, which includes a population of approximately 87,000 people in eastern portion of Alameda County. In addition to the area within the City limits, the sewer service area includes small areas that are outside of the City limits but within the City's Urban Growth Boundary (UGB), as well as the Ruby Hill portion of the City of Pleasanton. The City's sewer service area comprises approximately 28 square miles and the collection system consists of approximately 296 miles of gravity mains, three miles of force mains and four pump stations. While the City is continually planning and designing collection system improvements to ensure a safe and reliable system, a comprehensive review of the City's collection system facilities has not been completed since 2004. With changes in customer's water use in response to recent on-going drought conditions, and corresponding changes in wastewater flows, and several new development projects proposed throughout the City's sewer service area, there is a need for an updated Sewer Master Plan to evaluate the City's collection system's ability to meet existing and projected future flows and identify improvements needed to address system deficiencies. # 1.2 SEWER SYSTEM MASTER PLAN OBJECTIVES AND TASKS The objective of this Sewer Master Plan is to clearly define the City's long-term collection system infrastructure needs, and to develop a plan that will provide the flexibility and system reliability that the City needs to accommodate changing future needs. The development of this Sewer Master Plan included working closely with staff from the City's Water Resources Division, Engineering Division, and Planning Division to evaluate wastewater flow trends and future development plans and their impact on projected future wastewater flows and future collection system infrastructure needs. The update of the City's Sewer Master Plan will guide the City's implementation of required collection system improvement projects. It is important to note that the focus of this Sewer Master Plan is to recommend capacity-related improvement projects for the City's sewer system. It is not the intent for this Sewer Master Plan to be the sole source of all recommended sewer system projects for inclusion in the City's Capital Improvement Plan (CIP). Other sources include the Water Resource Division's asset management program (which focuses on the renewal or replacement of sewer system assets based on age and condition), regulations and code compliance, operations and maintenance staff input, and coordination with other roadway improvements. The City utilizes and coordinates all sources in the development of the City's overall CIP for the sewer system. To accomplish these objectives, seven primary tasks were conducted. These are outlined below: - Task S1. Data Collection and Review - Task S2. Review and Update Wastewater Collection System Planning Criteria - Task S3. Develop Wastewater Flow Projections - Task S4. Wastewater Collection System Hydraulic Model Update # **Chapter 1** # Introduction - Task S5. Existing and Future Capacity Analysis - Task S6. Develop Capital Improvement Plan - Task S7. Prepare Sewer System Master Plan With the completion of these tasks, this resulting Sewer Master Plan provides a comprehensive road map for the City for future planning for its collection system. ### 1.3 AUTHORIZATION The City authorized West Yost Associates (West Yost) to prepare
this Sewer Master Plan in November 2015. It should be noted that an update of the City's Water Master Plan was also included in the same authorization. An updated Water Master Plan was prepared by West Yost in parallel and in coordination with this Sewer Master Plan, and is included in a separate report. #### 1.4 REPORT ORGANIZATION This Sewer Master Plan is organized into the following chapters: - Executive Summary - Chapter 1. Introduction - Chapter 2. Existing System Description - Chapter 3. Service Area Sewer Flows - Chapter 4. Collection System Design and Performance Criteria - Chapter 5. Hydraulic Model Update and Capacity Evaluation - Chapter 6. Operational Analysis - Chapter 7. Prioritized Capital Improvement Program The following appendices to this Sewer Master Plan contain additional technical information, assumptions and calculations: - Appendix A: Collection System Hydraulic Model Modeler's Notebook - Appendix B: Isabel Neighborhood Plan Sewer System Evaluation - Appendix C: Cost Estimating Assumptions #### 1.5 RELATED PLANS AND REPORTS ### 1.5.1 2004 Sewer Master Plan The City's last Sewer Master Plan was completed in 2004¹. The City's existing (2003) average dry weather flow (ADWF) was 6.52 million gallons per day (mgd), and was projected to increase to 9.11 mgd at buildout of the City's sewer service area (not including BART development). This compares to a current (2015) ADWF of 6.02 mgd, now projected to increase to about 8.27 mgd at buildout of the City's sewer service area (not including BART development). BART development is analyzed in Appendix B of this Sewer Master Plan. It is interesting to note that the 2015 ADWF is slightly less than the 2003 ADWF despite a slight increase in population. It also interesting to note that the current projected buildout ADWF is about 13 percent less than what was projected in the 2004 Sewer Master Plan. This is the result of many changes which have occurred both within the City's sewer service area and throughout California since the 2004 Sewer Master Plan was completed. Drought conditions have impacted water resources throughout the state from 2007 to 2009, and again from 2011 to 2016. All but two years of the last decade have been dry in California. The most recent prior drought in Water Years 2007 to 2009 was followed by the current five years of drought (Water Years 2012 to 2016), and four of those years set a record for the driest four consecutive water years in California history since record-keeping began. These dry conditions prompted unprecedented State mandates for water conservation and efficient water use. And although much of the water conservation was due to reduced outdoor water use, indoor water use was also significantly reduced resulting in corresponding reductions in wastewater flows. As described in Chapter 3, unit sewer generation factors have been reviewed and updated for this Sewer Master Plan to account for changes in sewer generation for different land uses based on recent water consumption and sewer flow data. These changes include an assumed demand rebound to account for increases in water use as the City's water customers return to some of their pre-drought water use habits, which will result in a rebound in sewer generation as well. In many instances, the resulting revised unit sewer generation factors are lower than those used in the City's 2004 Sewer Master Plan, contributing to the lower sewer flow projections in this Sewer Master Plan for buildout of the City's sewer service area. ¹ City of Livermore 2004 Final Report Sewer Master Plan, prepared by Brown and Caldwell, July 2004. # **Chapter 1** # Introduction Many collection system improvements have been implemented since the completion of the 2004 Sewer Master Plan; however, with many changes in planned new development projects within the City's sewer service area, and reduced ADWF projected at buildout, there is a need to re-evaluate the City collection system's ability to meet existing and projected future flow conditions and identify improvements needed to address system deficiencies. # 1.5.2 Water Master Plan Update In parallel with this update to the City's Sewer Master Plan, West Yost has also prepared an update to the City's Water Master Plan. While the City's sewer service area encompasses the entire City of Livermore, the City's water service area is limited to only a portion of the City of Livermore (remaining portions are served by the California Water Service Company). Where applicable, the preparation of the City's Water Master Plan and Sewer Master Plan have been coordinated. Areas of coordination have included coordination with future development plans within the City's water service area and coordination between projected water demands and projected return-to-sewer flows within the City's water service area. # **CHAPTER 2** # **Existing System Description** The purpose of this chapter is to describe the City's existing sewer service area, collection system, and treatment infrastructure. The City's collection system infrastructure has been evaluated as part of this Sewer Master Plan. # 2.1 SEWER SERVICE AREA The City's collection system serves the incorporated limits of the City. It also serves small areas outside of the incorporated limits, as well as a portion of the City of Pleasanton. The sewer service area, its population, and its land use are described below. # 2.1.1 Service Area Description The sewer service area includes the approximate area within the incorporated City limits. In addition to the area within the City limits, the service area includes small areas that are outside of the City limits but within the City's UGB, as well as the Ruby Hill portion of the City of Pleasanton. The western portion of the sewer service area is relatively flat, necessitating the use of the four lift stations to convey flow from this area to the Water Reclamation Plant (WRP). The eastern portion of the service area slopes from the hills of the Altamont Pass in the east to the west. The existing sewer service area encompasses approximately 18,000 acres, or 28 square miles. This area includes open space and right-of-way areas that are not relevant to sewer generation and are not considered in the land use descriptions provided later in this chapter. The sewer service area is provided with potable water by four different water providers. A portion of the sewer service area is provided with potable water by the City. The central portion of the City is provided potable water by the California Water Service Company (Cal Water). Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratory (SNL) receive water directly from the San Francisco Public Utilities Commission (SFPUC) Hetch Hetchy system. Finally, the Ruby Hill Development receives potable water service from the City of Pleasanton. The sewer service area, categorized by the potable water provider, is shown on Figure 2-1. # 2.1.2 Service Area Population Historical population for the City's sewer service area is presented in Table 2-1. As shown in Table 2-1, the population of the City's sewer service area increased from 73,050 people in 2000 to 86,877 people in 2015 according to data received from the City, representing an almost 19 percent increase. 84,620 85,467 86,321 86.877 | Table 2-1. Historical Sewer Service Area Population (2000-2015) | | | |---|--|--| | Year | City of Livermore Sewer Service Area
Historical Population ^(a) | | | 2000 | 73,050 | | | 2001 | 73,844 | | | 2002 | 75,049 | | | 2003 | 76,393 | | | 2004 | 77,923 | | | 2005 | 80,560 | | | 2006 | 81,263 | | | 2007 | 81,576 | | | 2008 | 81,496 | | | 2009 | 82,221 | | | 2010 | 82,953 | | | 2011 | 83,783 | | ### 2.1.3 Sewer Service Area Land Use 2012 2013 2014 2015 The City provided GIS General Plan land use maps for the entire City. The existing land use map for the sewer service area is presented on Figure 2-2. The total acreages by General Plan land use designation for the parcels within the City's sewer service area in 2015 are summarized in Table 2-2. The land uses are grouped into the same categories that are shown in the City's General Plan. Furthermore, the land uses are categorized by whether they are in the City's water service area or Cal Water's water service area. Chapter 3 provides an evaluation of the sewer generation for the parcels within the City's sewer service area which are designated as reasonably foreseeable development projects or vacant parcels to be developed in the future. ⁽a) The 2000-2008 and 2015 population data are taken from the City's and Cal Water's 2015 Urban Water Management Plans (SBX7-7 Table 3 in Appendix E-1 and Chapter 5, respectively). For 2009-2014, the City's population data was estimated based on number of residential connections for those years multiplied by the number of persons per residential connection for 2015. The Cal Water service area population was estimated based on the average annual growth rates provided in the CalWater 2015 Urban Water Management Plan (Chapter 3.4). | Table 2-2. | C | Camilaa | A | Cuintina | | 110 a(a) | |------------|-------|---------|------|----------|------|----------| | Table 2-2. | Sewer | Service | Area | Existing | Land | use" | | Residential Rural Residential Rural Residential Rural Residential Urban Low Residential – 1 (1.0 - 1.5 du/acre) Urban Low Residential – 2 (1.5 - 2.0 du/acre) Urban Low Medium Residential (2.0 - 3.0 du/acre) Urban Medium Residential (2.0 - 3.0 du/acre) Urban Medium Residential (3.0 - 4.5 du/acre) Urban Medium Residential (3.0 - 4.5 du/acre) Urban Medium Residential (3.0 - 4.5 du/acre) Urban High Residential – 1 (6 - 8 du/acre) Urban High Residential – 2 (8 - 14 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14
- 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 2 (25 du/acre) Urban High Residential – 2 (25 du/acre) Urban High Residential (26 H | Cal Water
Service Area
186
73
415
601 | Total Acreage City Municipal Service Area 29 119 | Total Area ^(d) | |--|--|--|---------------------------| | Residential | 186
73
415
601 | Service Area 29 119 | Total Area (d) | | Residential | 73
415
601 | 29
119 | | | Rural Residential | 73
415
601 | 119 | | | Urban Low Residential = 2 (1.5 - 2.0 du/acre) | 415
601 | | 215 | | Urban Low Residential = 2 (1.5 - 2.0 du/acre) | 601 | | 192 | | Urban Medium Residential (3.0 - 4.5 du/acre) Urban Medium High Residential (4.5 - 6.0 du/acre) Urban High Residential – 1 (6 - 8 du/acre) Urban High Residential – 2 (8 - 14 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High School (14 - 22 du/acre) Urban High School (15 - 25 du/acre) Urban High School (16 - 26 du/acre) Urban High School (17 - 27 du/acre) Urban High School (18 - 27 du/acre) Urban High School (18 - 27 du/acre) Urban High School (18 - 27 du/acre) Urban High School (27 du/acre) Urban High School (27 du/acre) Urban High School (27 du/acre) Urban High Schoo | | 26 | 441 | | Urban Medium Residential (3.0 - 4.5 du/acre) Urban Medium High Residential (4.5 - 6.0 du/acre) Urban High Residential – 1 (6 - 8 du/acre) Urban High Residential – 2 (8 - 14 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Resident | | 384 | 985 | | Urban High Residential - 1 (6 - 8 du/acre) | 1,338 | 546 | 1,884 | | Urban High Residential – 2 (8 - 14 du/acre) Urban High Residential – 3 (14 - 18 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Residential – 4 (18 - 22 du/acre) Urban High Commercial — NC Service Subtotal | 453 | 341 | 793 | | Urban High Residential — 3 (14 - 18 du/acre) Urban High Residential — 4 (18 - 22 du/acre) Urban High Residential — 4 (18 - 22 du/acre) Commercial / Industrial Neighborhood Commercial Service Commercial Service Commercial Service Commercial Service Commercial Neighway Nother Commercial Nother Commercial Neighway Commercial Neighway Commercial Neighway Commercial Neighway Commercial Neighway Commercial Neighway | 54 | 35 | 88 | | Urban High Residential – 4 (18 - 22 du/acre) Commercial / Industrial Neighborhood Commercial Service Commercial Service Commercial Office Community Serving General Commercial NMIL Neighborhood Mixed Low Density NMM Neighborhood Mixed Medium Density NMM Neighborhood Mixed High Density Business and Commercial Park BCP Low Intensity Industrial LII High Intensity Industrial HII Community Facility Elementary School CF-E Intermediate School CF-I High School CF-I Community College CF-JC School General CF-S Research and Development CF-R&D Fire Station CF-FS Hospital CF-HOSP Civic Center CF-CC Cemetery CF-CC Cemetery CF-CE Government Service CF Airport CF-AIR Subtotal Public / Semi-Public / Open Space | 240 | 105 | 345 | | Subtotal | 79 | - | 79 | | Neighborhood Commercial NC | 1 | 63 | 64 | | Neighborhood Commercial Service Commercial Service Commercial HC Office Commercial Office Commercial Office Commercial Office Community Serving General Commercial NEighborhood Mixed Low Density NML Neighborhood Mixed Medium Density NMM Neighborhood Mixed High Density NMH Business and Commercial Park BCP Low Intensity Industrial High Intensity Industrial Hill Subtotal Community Facility Elementary School Intermediate School Intermediate School CF-I High School CF-B School General CF-S Research and Development Fire Station Fire Station CF-FS Hospital CF-CC Cemetery CF-CE Government Service Airport Downtown Do | 3,439 | 1,647 | 5,086 | | Service Commercial Highway Commercial Office Commercial Office Commercial OC Community Serving
General Commercial Neighborhood Mixed Low Density NML Neighborhood Mixed Medium Density NMH Neighborhood Mixed High Density Business and Commercial Park Low Intensity Industrial Hill High Intensity Industrial Elementary School CF-E Intermediate School CF-I High School CF-H Community College School General CF-S Research and Development Fire Station CF-FS Hospital CF-CC Cemetery CF-CE Government Service Airport Downtown Downt | | | | | Highway Commercial Office Commercial Office Commercial OCC Community Serving General Commercial Neighborhood Mixed Low Density Neighborhood Mixed Medium Density Neighborhood Mixed Medium Density Nimm Neighborhood Mixed High Density Nimm Business and Commercial Park Business and Commercial Park Business and Commercial Park Low Intensity Industrial Hill High Intensity Industrial Subtotal Community Facility Elementary School CF-E Intermediate School CF-I High School CF-I Community College CF-JC School General CF-S Research and Development Fire Station CF-FS Hospital CF-HOSP Civic Center CF-CC Cemetery CF-CE Government Service Airport Downtown Downtown Downtown Downtown Downtowl Public / Open Space | 42 | 25 | 67 | | Office Commercial OC Community Serving General Commercial CSGC Neighborhood Mixed Low Density NML Neighborhood Mixed Medium Density NMM Neighborhood Mixed High Density NMH Business and Commercial Park BCP Low Intensity Industrial LII High Intensity Industrial HIII Community Facility Elementary School CF-E Intermediate School CF-I High School CF-I Community College CF-JC School General CF-S Research and Development CF-R&D Fire Station CF-FS Hospital CF-HOSP Civic Center CF-CC Cemetery CF-CE Government Service DAM Subtotal Downtown Downtown Downtown Downtown Downtown Public / Open Space | 65 | 132 | 196 | | Community Serving General Commercial Neighborhood Mixed Low Density Neighborhood Mixed Medium Density Neighborhood Mixed High Density Neighborhood Mixed High Density NMM Neighborhood Mixed High Density NMH Business and Commercial Park Low Intensity Industrial Hill High Intensity Industrial Subtotal Community Facility Elementary School Intermediate School CF-I High School CF-I Community College CF-JC School General CF-S Research and Development Fire Station CF-FS Hospital CF-HOSP Civic Center Cemetery CF-CE Government Service Airport Subtotal Downtown Downtown Downtown Downtown Downtown Public / Open Space | 22 | 28 | 49 | | Neighborhood Mixed Low Density Neighborhood Mixed Medium Density Neighborhood Mixed High Density NMH Neighborhood Mixed High Density NMH Business and Commercial Park Low Intensity Industrial High Intensity Industrial Hill Subtotal Community Facility Elementary School Intermediate School Intermediate School CF-I High School CF-JC School General CF-S Research and Development Fire Station Fire Station CF-FS Hospital CF-HOSP Civic Center Cemetery CF-CC Cemetery CF-CE Government Service Airport Downtown Downtown Downtown Downtown Public / Open Space | 44 | - | 44 | | Neighborhood Mixed Medium Density Neighborhood Mixed High Density Business and Commercial Park Business and Commercial Park Low Intensity Industrial High Intensity Industrial Hill Subtotal Community Facility Elementary School Intermediate School Intermediate School CF-I High School CF-H Community College CF-JC School General CF-S Research and Development Fire Station Fire Station CF-FS Hospital Civic Center CF-CC Cemetery CF-CC Cemetery CF-CE Government Service Airport Downtown Downtown Downtown Downtown Public / Open Space | 110 | 38 | 148 | | Neighborhood Mixed High Density Business and Commercial Park Low Intensity Industrial High Intensity Industrial Hill Subtotal Community Facility Elementary School Intermediate School CF-I High School CF-I High School CF-JC School General CF-S Research and Development Fire Station Fire Station CF-FS Hospital CF-CC Cemetery CF-CC Cemetery CF-CC Government Service Airport Downtown Downtown Downtown Public / Open Space | 7 | - | 6.60 | | Business and Commercial Park | 6 | 0.26 | 6.26 | | Low Intensity Industrial | - | 128.99 | 128.99 | | High Intensity Industrial Subtotal | 23 | 721 | 745 | | Subtotal | 149 | 380 | 529 | | Community Facility Elementary School CF-E Intermediate School CF-I High School CF-H Community College CF-JC School General CF-S Research and Development CF-R&D Fire Station CF-FS Hospital CF-HOSP Civic Center CF-CC Cemetery CF-CE Government Service CF Airport CF-AIR Subtotal Downtown | - | 1,080 | 1,080 | | Elementary School | 467 | 2,533 | 3,000 | | Intermediate School | | | | | High School CF-H | 79 | 46 | 125 | | Community College | 60 | 10 | 70 | | School General CF-S Research and Development CF-R&D Fire Station CF-FS Hospital CF-HOSP Civic Center CF-CC Cemetery CF-CE Government Service CF Airport CF-AIR Downtown Downtown Downtown Downtown Dublic / Semi-Public / Open Space | 74 | | 74 | | Research and Development CF-R&D Fire Station CF-FS Hospital CF-HOSP Civic Center CF-CC Cemetery CF-CE Government Service CF Airport CF-AIR Subtotal Downtown Downtown DA Public / Semi-Public / Open Space Subtotal | - | 147 | 147 | | Fire Station | 14 | - | 14 | | Hospital CF-HOSP | - | - | - | | Civic Center CF-CC Cemetery CF-CE Government Service CF Airport CF-AIR Subtotal Downtown Downtown DA Subtotal Public / Semi-Public / Open Space | 2 | - | 2 | | Cemetery | 5 | - | 5 | | Government Service | 33 | - | 33 | | Airport CF-AIR Subtotal Downtown Downtown DA Subtotal Public / Semi-Public / Open Space | 25 | - | 25 | | Subtotal | 6 | 141 | 147 | | Downtown DA Downtown Subtotal Public / Semi-Public / Open Space | 36 | 528 | 564 | | Downtown DA Subtotal Public / Semi-Public / Open Space | 335 | 871 | 1,206 | | Subtotal Public / Semi-Public / Open Space | 400 | | 400 | | Public / Semi-Public / Open Space | 180 | - | 180 | | | 180 | | 180 | | | T | 51 | 51 | | BART BART Parks, Trailways, Recreation Areas OSP | 587 | 1,012 | 1,599 | | Large Parcel Agriculture LPA | 0 | 21 | 1,599 | | Large Parcel Agriculture LPA Limited Agriculture LDAG | 21 | 373 | 394 | | Agriculture/Viticulture AGVT | 107 | 5 | 112 | | Hillside Conservation HLCN | 107 | 195 | 195 | | Subtotal Subtotal | 715 | 1,658 | 2,373 | | South Livermore Valley Specific Plan | 7 13 | 1,000 | 2,373 | | Agricultural Preserve SV-AP | 7 | 103 | 110 | | Residential Development Area SV-RDA | 380 | 233 | 614 | | Vineyard Commercial SV-VC | 28 | 233 | 51 | | Subtotal | 415 | 359 | 774 | | Total Acres | 5,550 | 7,068 | 12,618 | Developed based on data received from the City of Livermore on December 18, 2015. It is not included the Ruby Hill Developments, SNL and LLNL area. Dual land use areas are considered under primary land use area and/or larger land use area per City's Land use changes by APN excel sheet received in November 2016. Total acreage does not include street rights-of-way in subdivided areas. Therefore, the total acreage is less than the total area within Service Areas. ### 2.2 EXISTING COLLECTION SYSTEM The City's sewer infrastructure includes the Water Reclamation Plant (WRP) and the sewer collection system that is tributary to the WRP. The collection system conveys wastewater primarily by gravity to the WRP, which is located at the northwest corner of Isabel Avenue and Jack London Boulevard, in the western portion of the City. Generally, wastewater flows by gravity from the east to the west in the sewer service area. Therefore, the small portions of the service area west of the WRP are served via lift stations. The collection system consists of approximately 299 miles of gravity mains, three miles of force mains and four lift stations. An overview of the City's collection system is shown on Figure 2-3. The gravity mains, force mains, and lift stations that comprise the collection system are described in more detail in the sections below. # 2.2.1 Existing Gravity Mains The existing gravity mains in the collection system, which range in size from 4-inch to 60-inch diameter, are summarized in Table 2-3. As noted in the table, approximately 79 percent of these gravity mains are 8-inch diameter or smaller, approximately 6 percent are 10-inch diameter, and approximately 14 percent are larger than 10-inch diameter. The gravity main diameters are shown on Figure 2-4. | Table 2-3. Livermore Existing Gravity Mains by Diameter | | | | | | |--|-------------------|---------------|------------|--|--| | Diameter, inches (in) | Length, feet (ft) | Length, miles | Percentage | | | | 4 | 1,405 | 0.27 | 0.09 | | | | 6 | 61,718 | 11.69 | 3.91 | | | | 8 | 1,186,388 | 224.69 | 75.14 | | | | 10 | 103,108 | 19.53 | 6.53 | | | | 12 | 74,357 | 14.08 | 4.71 | | | | 15 | 24,061 | 4.56 | 1.52 | | | | 18 | 42,626 | 8.07 | 2.70 | | | | 21 | 11,714 | 2.22 | 0.74 | | | | 24 | 21,948 | 4.16 | 1.39 | | | | 27 | 8,845 | 1.68 | 0.56 | | | | 30 | 13,738 | 2.60 | 0.87 | | | | 33 | 7,017 | 1.33 | 0.44 | | | | 36 | 7,295 | 1.38 | 0.46 | | | | 39 | 3,837 | 0.73 | 0.24 | | | | 42 | 7,844 | 1.49 | 0.50 | | | | 48 | 2,478 | 0.47 | 0.16 | | | | 60 | 622 | 0.12 | 0.04 | | | | Total | 1,579,000 | 299.05 | 100% | | | | Source: City Geographical Information system (GIS) updated in November 2017. | | | | | | The existing collection system gravity main material is summarized in Table 2-4. Approximately 54 percent of the existing collection system gravity mains are constructed of vitrified clay pipe (VCP), and about 39 percent are constructed of polyvinyl chloride (PVC). Other materials, which compose a small amount of the existing gravity mains, include reinforced concrete, thermoplastic PVC (TRUSS), asbestos cement, ductile iron, high-density polyethylene (HDPE), acrylonitrile butadiene styrene (ABS), reinforced plastic mortar, and cured-in-place pipe (CIPP). The existing pipeline materials in the collection system are presented on Figure 2-5. | Table 2-4. Livermore Existing Gravity Mains by Pipeline Material | | | | | |
--|------------|---------------|------------|--|--| | Material | Length, ft | Length, miles | Percentage | | | | Vitrified Clay Pipe (VCP) | 850,756 | 161.13 | 53.88 | | | | Polyvinyl Chloride (PVC) | 618,656 | 117.17 | 39.18 | | | | Reinforced Concrete | 37,675 | 7.14 | 2.39 | | | | Thermoplastic PVC (TRUSS) | 27,906 | 5.29 | 1.77 | | | | Asbestos Cement | 12,080 | 2.29 | 0.77 | | | | Ductile Iron | 8,342 | 1.58 | 0.53 | | | | Reinforced Plastic Mortar | 14,914 | 2.82 | 0.94 | | | | High-Density Polyethylene (HDPE) | 2,523 | 0.48 | 0.16 | | | | Acrylonitrile Butadiene Styrene (ABS) | 1,661 | 0.31 | 0.11 | | | | Cured-in-Place Pipe (CIPP) | 84 | 0.02 | 0.01 | | | | Unknown | 4,404 | 0.83 | 0.28 | | | | Total | 1,579,000 | 299.05 | 100% | | | | Source: City GIS updated in November 2017 | | | | | | # 2.2.2 Existing Force Mains The existing collection system includes approximately three miles of force mains. The existing force mains range in size from 8-inch to 12-inch diameter. The location of the force mains is discussed in more detail below in conjunction with discussion of the lift stations. # 2.2.3 Existing Lift Stations The City has four collection system lift stations located in the western portion of collection system. The lift stations and their configurations in the overall collection system are described below. # 2.2.3.1 El Charro Lift Station In 2011, the El Charro Lift Station was constructed at Livermore Outlets Drive, adjacent to West Jack London Avenue. The El Charro Lift Station pumps wastewater from the San Francisco Premium Outlets and Tri-Valley Golf Center. The 6,578 linear feet of 8-inch diameter force main discharges wastewater directly into the Airport Lift Station. This lift station has an emergency generator. # 2.2.3.2 Airport Lift Station The Airport Lift Station, located on West Jack London Boulevard, was upgraded in 2003. The lift station serves Doolan Road, the area located southwest of the Interstate 580 (I-580) and Kitty Hawk Road, Livermore Municipal Airport, Las Positas Golf Course, Airway Boulevard, and the area located south of West Jack London Boulevard between Discovery Drive and Voyager Street. The wastewater is discharged through 4,300 linear feet of 10-inch diameter force main and 1,023 linear feet of 8-inch diameter force main. Wastewater from the force main discharges into the gravity system and is conveyed to the WRP. This lift station does not have an emergency generator. # 2.2.3.3 College Lift Station The College Lift Station, located in Branson Way adjacent to Isabel Avenue, was upgraded and relocated in 2012. The lift station serves the areas located north of I-580. The 2,148 linear feet of 12-inch diameter force main discharges wastewater immediately upstream of the WRP. This lift station has an emergency generator. # 2.2.3.4 Rickenbacker Lift Station The Rickenbacker Lift Station, which is in Isabel Avenue and adjacent to the WRP, was upgraded and relocated in 2012 as part of the same project that upgraded and relocated the College Lift Station. The Rickenbacker Lift Station serves the small area located east of Isabel Avenue and Rutan Drive. The Rickenbacker Lift Station has a short 12-inch diameter force main that ties into the College Lift Station force main. Wastewater from the Rickenbacker Lift Station discharges with wastewater from the College Lift Station immediately upstream of the WRP. This lift station has an emergency generator. The existing capacity of each lift station is provided in Table 2-5. The area of the collection system tributary to each lift station is displayed on Figure 2-6. | Table 2-5. Lift Station Capacity | | | | | | | |----------------------------------|-------------|---|-----------------|-----------------------|--|--| | Lift Station Name | Pump Number | Pump Capacity,
gallons per
minute (gpm) | Design Head, ft | Firm
Capacity, gpm | | | | College Lift
Station | 1
2 | 1,180
1,180 | 52 | 1,180 | | | | Airport Lift Station | 1
2 | 1,145
1,145 | 125 | 1,145 | | | | Rickenbacker Lift
Station | 1
2 | 400
400 | 31 | 400 | | | | El Charro Lift
Station | 1
2 | 320
320 | 65 | 320 | | | #### **Existing System Description** In addition to the four lift stations owned by the City, there are two private lift stations serving a small residential and commercial development at Portola Avenue and Naylor Avenue. These lift stations are not evaluated in this Sewer Master Plan. #### 2.3 WASTEWATER TREATMENT AND DISPOSAL The WRP is located on about 35 acres in the western portion of the City. The first wastewater treatment facilities were constructed at this site in 1958. The original facility provided primary treatment and had a capacity of about 2.5 mgd. After several expansions and upgrades, the WRP currently has a permitted ADWF of 8.5 mgd. The current average daily dry weather flow during the summer is 6 mgd. The WRP includes primary, secondary, and tertiary treatment processes. Treatment plant solids undergo thickening, stabilization, and dewatering prior to transport offsite for use as landfill cover. The WRP is equipped with the emergency holding basin that can hold influent during severe storm events and during routine maintenance of the influent pumps. The basin is normally utilized on a daily basis for flow equalization. All influent flow up to the pump limit of approximately 12 mgd is sent through primary treatment and then sent to equalization during peak hours. It is brought back downstream of the influent flow meter during low flow hours and mixed with sewer influent. Flow above approximately 12 mgd goes straight to equalization and does not get metered by the influent meter. Approximately 4 to 7 mgd of treated wastewater is sent through the Livermore Amador Valley Water Management Agency (LAVWMA) pipeline for ultimate disposal by the East Bay Dischargers Authority (EBDA) in San Francisco Bay. The City also has a recycled water program that provides treated effluent up to 6 mgd for landscape irrigation and fire protection applications. The City's wastewater treatment and disposal infrastructure is not evaluated as part of this Sewer Master Plan. City of Livermore Cal Water City of Pleasanton Sewer Service Boundary City Limits Urban Growth Boundary Notes: 1. SFPUC refers to San Francisco Public Utilities Commission. Figure 2-1 Sewer Service Boundary and Potable Water Providers #### Symbology Sewer Service Boundary #### Notes: 1. Residential Land Use Area/Density: 1.0-5.0 Acre Site 1.0-1.5 du/acre UL#1 UL#2 1.5-2.0 du/acre ULM 2.0-3.0 du/acre 3.0-4.5 du/acre 4.5-6.0 du/acre UMH 6.0-8.0 du/acre 8.0-14.0 du/acre UH#2 14.0-18.0 du/acre UH#4 18.0-22.0 du/acre UH#5 22.0-38.0 du/acre UH#5a 22.0-30.0 du/acre UH#5b 30.0-38.0 du/acre UH#6 38.0-55.0 du/acre - 2. City of Pleasanton provides potable water for Ruby Hill developments. - 3. San Francisco Public Utilities Commission provides potable water for National Laboratories. Figure 2-2 Existing Land Uses WRP Water Reclamation Plant — Gravity Main Sewer Service Boundary # Figure 2-3 **Existing Collection System** #### Symbology WRP Water Reclamation Plant LS Private Lift Station --- Force Main #### **Gravity Main - Diameter** - 4-inch - 8-inch 10-inch - 18-inch --- 21-inch - 33-inch --- 36-inch - 60-inch Sewer Service Boundary # Figure 2-4 **Gravity Main Diameter** #### Symbology WRP Water Reclamation Plant LS Private Lift Station - - - Force Main #### **Gravity Main - Material** - Vitrified Clay - Polyvinyl Chloride (PVC) - Reinforced Concrete - Thermoplastic PVC (TRUSS) - --- Asbestos Cement - Ductile Iron (DI) - Reinforced Plastic Mortar - High-density Polyethylene - Acrylonitrile Butadiene Styrene (ABS) - Cured-in-place Pipe (CIPP) - Unknown - Sewer Service Boundary # Figure 2-5 Gravity Main Material WRP Water Reclamation Plant LS Private Lift Station - - Force Main ---- Gravity Main #### Pump Station Tributary Area Airport Pump Station College Pump Station El Charro Pump Station Rickenbacker Pump Station Water Reclamation Plant Sewer Service Boundary # Figure 2-6 **Lift Station Tributary Area** #### **CHAPTER 3** #### **Service Area Sewer Flows** Chapter 3 describes the development of existing and future design flows for use in hydraulic evaluation of the City's collection system. This development builds upon the sewer service area land use data that was presented in Chapter 2. #### 3.1 SEWER FLOW COMPONENT OVERVIEW In this Sewer Master Plan, the capacity of the collection system is evaluated versus design sewer flow requirements. As is typical, the design flow for the City's collection system is defined to be the Peak Wet Weather Flow (PWWF) for existing and future conditions in the collection system. PWWF is developed using ADWF and Peak Dry Weather Flow (PDWF) components. The design flow components are described in more detail in the sections below. #### 3.1.1 Average Dry Weather Flow ADWF is generally accepted to include two components: base sanitary flow (BSF) and groundwater infiltration (GWI). BSF represents the sanitary and process flow contributions from residential, commercial, institutional, and industrial users of the collection system. GWI is groundwater that infiltrates into defects in sewer pipes and manholes, particularly in winter and springtime in low-lying areas. GWI is typically seasonal in nature and can remain relatively constant over periods of several days or months. However, rainfall clearly has long-term impacts on GWI rates, as evidenced by measurable increases in GWI after prolonged periods of rainfall. #### 3.1.2 Peak Dry Weather Flow BSF is typically not discharged into the collection system at a constant rate during the day. BSF varies throughout the day, but typically follows predictable diurnal patterns depending on the type of land use. For example, residential dischargers tend to have high discharge in the morning
hours as users wake up and in the evening hours as users return to the home. Commercial dischargers tend to have fairly steady discharge during business hours, but very low discharge outside of business hours; and industrial dischargers have flow patterns that depend upon their individual processes. PDWF is the peak flow experienced in a collection system during dry conditions, and it is determined by the diurnal discharge patterns of the collection system users as described above. PDWF is typically 1.2 to 3.0 times the ADWF in a collection system, depending on the mixture of discharger types and the layout of the collection system. #### 3.1.3 Peak Wet Weather Flow PWWF is composed of PDWF with the addition of Rainfall Dependent Inflow and Infiltration (RDII). RDII is storm water inflow and infiltration that enter the system in direct response to rainfall events, either through direct connections such as holes in manhole covers or illegally connected roof leaders or area drains, or, more commonly, through defects in sewer pipes, manholes, and service laterals. RDII typically results in short-term peak flows that recede relatively quickly after the rainfall ends. The magnitude of RDII flows are related to the intensity and duration of the rainfall, the relative soil moisture at the time of the rainfall event, and the condition of the sewers. The wastewater flow components described in this section are presented on Figure 3-1. Rainfall Peak Wet Weather Flow Peak Dry Weather Flow Average Dry Weather Flow BSF GWI Time Figure 3-1. Wastewater Components for Typical PWWF Conditions #### 3.2 DESIGN FLOW DEVELOPMENT The following sections describe how the ADWF, PDWF, and PWWF components for existing and future conditions were developed to calculate existing and future design flows for the City's Sewer Master Plan. #### 3.2.1 ADWF Development ADWF development is described below. #### 3.2.1.1 Historical ADWF Between the years 2013 to 2016, California experienced a severe three-year drought. This drought significantly impacted water demand patterns and sanitary sewer generation patterns throughout the state, and has made it difficult to establish a true "baseline" water demand or sewer flow for this time period. This difficulty in establishing a baseline complicates the development of reliable future projections. The City's Water Master Plan invested considerable effort into studying the water demand patterns during the drought to develop an existing baseline. The Water Master Plan established that demands in 2013 (high point of demand during the drought) and 2015 (low point of demand during the drought) were critical to development of the baseline demand. Because water demand that is utilized indoors drives sanitary sewer generation, existing ADWF was developed using 2013 and 2015 data, consistent with the development of demands in the City's Water Master Plan. As discussed above, ADWF consists of both GWI and BSF. Analysis of flow monitoring data conducted for the 2004 Master Plan indicated that GWI values were small enough to be considered negligible. GWI is assumed to be negligible for this Sewer Master Plan as well. Therefore, ADWF is assumed to be composed completely of BSF generated by collection system users. ADWF was calculated for the collection system by calculating the average flows during non-precipitation days entering the WRP during 2013 and 2015. The average flows were calculated from 15-minute interval Supervisory Control and Data Acquisition (SCADA) data provided by the City. For the purposes of the calculation, a non-precipitation day was considered to be any day for which no precipitation was recorded during that day, as well as during the previous three days. Precipitation data was taken from publicly available National Weather Service records for the Livermore Airport. The ADWF as measured at the WRP for 2013 and 2015 is shown in Table 3-1. The ADWF decreased from 6.82 mgd to 6.02 mgd from 2013 to 2015. The sewer service area population, and the ADWF on a per capita basis that results from dividing the ADWF by the population, are also shown in Table 3-1. As shown, the per capita ADWF value decreased from 80 gallons per capita per day (gpcd) to 70 gpcd between 2013 to 2015. | | Table 3-1. Histo | rical ADWF at WRP | | |-------|---------------------------|-------------------------------------|-----------------------| | Year | ADWF ^(a) , mgd | Population ^(b) , persons | ADWF Per Capita, gpcd | | 2013 | 6.82 | 85,466 | 80 | | 2015 | 6.02 | 86,877 | 70 | | (=)== | | | | ⁽a) WRP SCADA Data from the City. To assess the impact of the drought on ADWF, ADWF versus average day water demands were tabulated. Because the majority of water demand in the sewer service area is served by either the City Municipal System or the Cal Water System, and because these two potable water systems have different demand patterns and projections as defined by their respective Urban Water Management Plans (UWMPs), the water demand for these two agencies is shown separately. The water demand compared to ADWF for 2013 and 2015 can be found in Table 3-2. The water demand for the City Municipal system was provided by the City for the Water Master Plan. The water demand for Cal Water was provided via billing records for 2013 and 2015 by Cal Water. All data in Table 3-2, both from the City Municipal System and Cal Water, is based upon billing records and therefore does not include factors for water loss. ⁽b) Population data from City of Livermore 2015 Urban Water Management Plan and Cal Water 2015 Urban Water Management Plan. | Table 3-2. Water Demand and Wastewater Generation Comparison | |--| |--| | | 2004 | 2013 | 2015 | Difference
between 2013
and 2015 | Percentage of Change | |--|---------|-------|------|--|----------------------| | Cal Water Winter Water Demand, mgd | | 5.18 | 4.53 | -0.66 | -13% | | City Winter Water Demand, mgd | | 2.83 | 2.61 | -0.21 | -8% | | Total Winter Water Demand, mgd | | 8.01 | 7.14 | -0.87 | -11% | | Cal Water Annual Water Demand, mgd | | 10.00 | 6.35 | -3.65 | -36% | | City Annual Water Demand, mgd | | 5.60 | 3.64 | -1.95 | -35% | | Total Annual Water Demand ^(a) , mgd | | 15.59 | 9.99 | -5.60 | -36% | | Average Dry Weather Flow (WW) ^(a) , mgd | 5.95 | 6.45 | 5.70 | -0.76 | -12% | | Winter Return-To-Sewer | | 81% | 80% | | | | Annual Return-To-Sewer | | 41% | 57% | | | | (a) Excluding Ruby Hill developments, LLNL and S | NL area | | | | | As shown in Table 3-2, total annual water demand decreased by 35 percent between the two water purveyors, with Cal Water's decrease being slightly higher on a percentage basis. Winter water demand decreased 11 percent overall, with Cal Water's percentage decrease again being higher. Since the winter water demand decrease is smaller than the annual water demand decrease, this indicates that the majority of the demand decrease was the result of less outdoor irrigation usage in the sewer service area. This conclusion is supported by the fact that the percentage decrease in ADWF recorded during the same timeframe is nearly identical to the percentage decrease in winter water demand, meaning that the winter Return-To-Sewer Ratio stayed nearly constant between 2013 and 2015. The annual Return-To-Sewer Ratio increased from 42 percent in 2013 to 57 percent in 2015, indicating that a higher percentage of water is going toward indoor use in 2015, and confirming that the majority of conservation took place in outdoor irrigation uses. Because the Cal Water service area experienced a larger percentage drop in water demand during the time period, this may reflect that the Cal Water service area does not utilize recycled water, and therefore has a higher percentage of water devoted to irrigation uses, or may reflect differences in conservation programs and approaches between the two agencies. #### 3.2.1.2 Existing Rebounded ADWF Building upon the demand analysis performed for the Water Master Plan, a baseline ADWF independent of drought impacts was calculated for this Sewer Master Plan. This non-drought baseline for existing flows is identified as the existing rebounded ADWF, analogous to the average dry demand rebounded for the Water Master Plan. The baseline non-drought ADWF was developed using the following steps: - Water billing data from the City and from Cal Water were processed for individual parcels throughout the Sewer Service Area. - The water billing data for each parcel was increased to account for rebound from water conservation. - A Return-to-Sewer ratio was applied to the rebounded water value to convert water demand to sewer flow. The details of these three steps are presented below. #### 3.2.1.2.1 Historical Water Billing Data Processing For the Water Master Plan, two sets of spatially allocated demands, one each for 2013 and 2015, were established for water demands in the City's Municipal service area. Spatially allocated water demands were created for both 2013 and 2015 for the Cal Water service area as part of the Sewer Master Plan. Billing records provided by Cal Water were spatially located according to service address in order to achieve this location. The result of this effort was spatially allocated water demand for both 2013 and 2015, attached to parcels throughout the City's sewer service area. Because this data is all based upon billing records, it contains no factors related to water loss. The water demands allocated to parcels also allowed for a summary of water demands to be created by General Plan land use category for both demand years, which is helpful for the development of unit flow factors per land use category that can be applied to future development to generate flow projections. #### 3.2.1.2.2 Water Demand Rebound Demand rebound
refers to increases in demands after a prolonged drought. As shown in Table 3-2, water demand in the sewer service area decreased approximately 35 percent between 2013 and 2015. The decreases have likely been due to conservation-oriented behavioral changes, such as irrigating less frequently, as well as more permanent changes, such as installation of low-flow toilets or removal of lawns. While the permanent changes can be expected to remain in place after the drought ends, whether or not the behavioral changes continue is less certain. There are limited precedents from which to draw conclusions regarding demand rebound. The Gold Coast area of Australia experienced a severe drought between June 2002 and January 2004. Demands decreased significantly during the drought as a result of water restrictions, but after the drought ended, the demands rebounded 90 percent (to within 10 percent of what they were prior to the drought). The same drought affected northern New South Wales, where demands also decreased significantly during the drought, but rebounded 84 percent (to within 16 percent of what they were prior to the drought). While the level to which demands in the City's water service area will rebound is unknown, the City decided to include an assumption of some level of demand rebound into the planning process. In the Water Master Plan, the 2020 target of 192 gpcd is 90 percent of the 2013 per capita water use of 214 gpcd. This would indicate a rebound in demands up to 90 percent of what demands were prior to the current drought. This compares favorably to the demand rebound values of 84 percent and 90 percent that were observed in the New South Wales and Gold Coast areas of Australia. Similar percentages of rebound were applied to the demands in the Cal Water service area for this Sewer Master Plan to create uniformly rebounded water demands to serve as the basis for existing rebounded ADWF. #### 3.2.1.2.3 Return-to-Sewer Ratio Shift ADWF is projected by applying a Return-to-Sewer ratio to annual average day water demands. This Return-to-Sewer ratio varies by usage type, with single family dwelling units typically having relatively low ratios, and commercial and industrial users typically having higher ratios. As shown in Table 3-2, the average Return-to-Sewer ratio across the entire sewer service area increased from 41 percent in 2013 to 57 percent in 2015 as outdoor water use was curtailed more heavily than indoor water use during the drought. The Return-to-Sewer ratio after conservation is expected to return nearly to the pre-drought value as behaviors return to pre-drought levels as described above. However, it is estimated that there will be a small Return-to-Sewer ratio "shift" in much the same way that the water demand rebounds. Using a percentage of shift similar to the percentage of demand rebound, the shifted Return-to-Sewer ratio for existing rebounded ADWF is 44 percent. Appropriate Return-to-Sewer ratios were applied to the various General Plan land uses within the sewer service area. These land use specific Return-to-Sewer ratios were calculated such that a flow weighted average Return-to-Sewer ratio of 44 percent was achieved, and these ratios were applied to the existing rebounded water demands to determine the existing rebounded ADWF values by land use. The existing rebounded ADWF values by land use, along with the values used in the 2004 Master Plan and the calculated 2013 and 2015 values for comparison, can be found in Table 3-3. #### 3.2.1.2.4 Summary of Existing Rebounded ADWF The development of demands for the Water Master Plan and flows for the Sewer Master Plan were coordinated to achieve consistency and ease in updating and refining. The existing rebounded water demands, Return-to-Sewer ratios, and resulting existing rebounded ADWF are summarized in Table 3-4. #### 3.2.1.3 Projected Build-Out ADWF Buildout ADWF projections were developed using the baseline ADWF projections as a starting point. Parcels with existing development were assumed to remain constant in sewer generation unless identified for a Reasonably Foreseeable Development Project. Reasonably Foreseeable Development Projects were identified by City planning staff and were tracked and summarized by inclusion in either the City Municipal service area or Cal Water service area. The Reasonably Foreseeable Development Projects in the City Municipal service area can be seen on Figure 3-2. The Reasonably Foreseeable Development Projects in the Cal Water service area can be seen on Figure 3-3. The ADWF for Reasonably Foreseeable Development Projects in the City Municipal Service Area are shown in Table 3-5. The ADWF for Reasonably Foreseeable Development Projects in the Cal Water Service Area are shown in Table 3-6. In addition to the flows added for Reasonably Foreseeable Development Projects, vacant land was assumed to be fully developed under build-out conditions. Development was assumed to occur according to General Plan Land Use categorization, and flows were projected according to the values described above and found in Table 3-4. The flows projected for the vacant areas within the sewer service area are shown in Table 3-7. The vacant areas can be found on Figures 3-2 and 3-3, respectively, for the City Municipal service area and the Cal Water service area. It should be noted that that all projected Water Master Plan demands were adjusted for the Sewer Master Plan so that water loss values incorporated in the Water Master Plan were excluded. | | | Table 3-3. ADWF Factors History and Projection per Land Use | VF Factors Hi | story and P | rojection per | Land Use | | | | | |--|--------------------------------------|---|----------------------------------|-------------|-------------------|---------------------------------|---------------------------------|------------------|----------------------|------------------------------------| | | | | 2004 Master Plan ADWF
Factors | Plan ADWF | 2013 Calcu
Fac | 2013 Calculated ADWF
Factors | 2015 Calculated ADWF
Factors | ated ADWF
ors | Existing Rebo
Fac | Existing Rebounded ADWF
Factors | | Land Use Category | Land Use Designation | Land Use Code | gpd per unit | gpad | | | Rural Residential | RR | 180 | - | 190 | - | 150 | • | 180 | - | | | Urban Low Residential – 1 | UL-1 | 180 | 1 | 190 | • | 150 | 1 | 180 | 1 | | | Urban Low Residential – 2 | UL-2 | 180 | _ | 190 | - | 150 | • | 180 | • | | | Urban Low Medium Residential | NTN | 180 | ' | 190 | • | 150 | 1 | 180 | 1 | | | Urban Medium Residential | MU | 180 | 1 | 190 | • | 150 | 1 | 180 | 1 | | Residential | Urban Medium High Residential | NMH | 180 | 1 | 190 | | 150 | 1 | 180 | 1 | | | Urban High Residential – 1 | UH-1 | 137 | 1 | 140 | • | 130 | 1 | 140 | 1 | | | Urban High Residential – 2 | UH-2 | 137 | 1 | 140 | • | 130 | 1 | 140 | • | | | Urban High Residential – 3 | UH-3 | 137 | 1 | 140 | | 130 | 1 | 140 | 1 | | | Urban High Residential – 4 | UH-4 | 102 | 1 | 80 | • | 80 | 1 | 80 | 1 | | | Residential Development Area | SV-RDA | 180 | 1 | 190 | ' | 150 | 1 | 180 | • | | Downtown | Downtown | DA | • | 009 | 1 | 790 | 1 | 620 | ' | 190 | | | Neighborhood Commercial | NC | 1 | 009 | 1 | 200 | - | 400 | 1 | 200 | | | Service Commercial | SC | 1 | 009 | 1 | 200 | 1 | 180 | 1 | 200 | | Commercial | Highway Commercial | 오 | 1 | 009 | 1 | 150 | 1 | 130 | 1 | 150 | | | Office Commercial | 00 | 1 | 009 | 1 | 730 | 1 | 510 | 1 | 730 | | | Community Serving General Commercial | ၁၅ | - | 009 | - | 250 | - | 220 | • | 250 | | Mixed Use | Neighborhood Mixed Medium Density | MMN | - | 2,650 | - | 2,650 | - | 2,650 | • | 2,650 | | | Business and Commercial Park | BCP | - | 009 | - | 510 | _ | 430 | - | 510 | | Industrial | Low Intensity Industrial | III | 1 | 200 | - | 420 | • | 320 | • | 420 | | | High Intensity Industrial | 뤂 | 1 | 200 | • | 009 | 1 | 009 | 1 | 009 | | | Elementary School | CF-E | 1 | 200 | - | 480 | • | 410 | 1 | 200 | | | Intermediate School | CF-I | 1 | 200 | - | 200 | | 490 | - | 200 | | | High School | CF-H | 1 | 200 | 1 | 480 | ı | 310 | 1 | 200 | | | School General | CF-S | 1 | 200 | • | 490 | 1 | 490 | 1 | 200 | | Community | Research and Development | CF-R&D | - | 200 | - | 200 | - | 200 | • | 200 | | Facility | Fire Station/ Government Service | CF | - | 200 | - | 440 | - | 390 | - | 440 | | | Hospital | CF-HOSP | 1 | 200 | 1 | 4,170 | 1 | 3,750 | • | 4,170 | | | Civic Center | CF-CC | - | 200 | - | 190 | - | 330 | - | 062 | | | Airport | CF-AIR | - | 100 | - | 100 | - | 100 | - | 100 | | | Cemetery | CF-CE | - | 200 | _ | 30 | - | 30 | • | 30 | | | Limited Agriculture | LDAG | 1 | - | - | - | | 1 | - | ı | | | Hillside Conservation | HLCN | 1 | 1 | • | | 1 | 1 | 1 | ı | | Open Space | Large Parcel Agriculture | LPA | 1 | 1 | 1 | • | 1 | 1 | 1 | ı | | | Agriculture/Viticulture | AGVT | - | - | - | - | - | - | • | 1 | | | Parks, Trailways, Recreation Areas | OSP | - | - | _ | | - | • | • | 1 | | South Livermore | Vineyard Commercial | SV-VC | - | - | - | - | - | - | - | 200 | | Valley | Agricultural Preserve | SV-AP | - | - | _ | | - | • | • | 1 | | gpd = gallons per day
gpad = gallons per acre per day | oer day | Table 3-4. | Summary of Exist | ing Rebounded AD | WF ^(a) | | | |------------------------|--------------------------------------|------------------|--------------------------------|-------------------|---------------------------|-----------------------| | | | | 2015 Rebounded | Return-to-Se | ewer Ratio ^(c) | Existing
Rebounded | | Land Use Category | Land Use Designation | Land Use Code | Water Use ^(b) , mgd | With RW Use (d) | Without RW Use (e) | ADWF, mgd | | | Rural Residential | RR | 0.131 | | 0.32 | 0.041 | | | Urban Low Residential – 1 | UL-1 | 0.155 | | 0.37 | 0.057 | | | Urban Low Residential – 2 | UL-2 |
0.665 | | 0.37 | 0.24 | | | Urban Low Medium Residential | ULM | 1.751 | | 0.42 | 0.736 | | | Urban Medium Residential | UM | 3.385 | | 0.53 | 1.77 | | Residential | Urban Medium High Residential | UMH | 1.471 | | 0.53 | 0.772 | | | Urban High Residential – 1 | UH-1 | 0.200 | | 0.63 | 0.126 | | | Urban High Residential – 2 | UH-2 | 0.955 | | 0.63 | 0.60 | | | Urban High Residential – 3 | UH-3 | 0.318 | | 0.74 | 0.234 | | | Urban High Residential – 4 | UH-4 | 0.113 | 0.75 | 0.73 | 0.083 | | | Residential Development Area | SV-RDA | 0.869 | | 0.37 | 0.319 | | Downtown | Downtown | DA | 0.391 | | 0.42 | 0.164 | | | Neighborhood Commercial | NC | 0.100 | | 0.53 | 0.053 | | | Service Commercial | SC | 0.070 | | 0.53 | 0.037 | | Commercial | Highway Commercial | HC | 0.015 | | 0.53 | 0.008 | | | Office Commercial | ОС | 0.069 | | 0.53 | 0.036 | | | Community Serving General Commercial | CSGC | 0.082 | | 0.63 | 0.052 | | Mixed Use | Neighborhood Mixed Medium Density | NMM | 0.001 | | 0.63 | 0.0003 | | | Business and Commercial Park | BCP | 0.418 | 0.85 | 0.73 | 0.33 | | Industrial | Low Intensity Industrial | LII | 0.194 | | 0.79 | 0.15 | | | High Intensity Industrial | HII | 0.366 | | 0.74 | 0.27 | | | Elementary School | CF-E | 0.125 | | 0.53 | 0.066 | | | Intermediate School | CF-I | 0.047 | | 0.63 | 0.030 | | | High School | CF-H | 0.048 | | 0.63 | 0.030 | | | School General/ Community College | CF-S | 0.005 | | 0.63 | 0.003 | | Community | Fire Station/ Government Service | CF | 0.007 | | 0.63 | 0.00 | | Facility | Hospital | CF-HOSP | 0.047 | | 0.73 | 0.03 | | | Civic Center | CF-CC | 0.017 | | 0.63 | 0.010 | | | Airport | CF-AIR | 0.008 | | 0.53 | 0.00 | | | Cemetery | CF-CE | 0.006 | | 0.21 | 0.00 | | South Livermore Valley | Vineyard Commercial | SV-VC | 0.018 | | 0.32 | 0.00 | | · | · · | Tota | 12.044 | 0. | 52 | 6.286 | ^(a) Excluding Ruby Hill developments, LLNL and SNL area. ⁽b) Excluding Open Space land use and excluding water losses from all land uses. ⁽c) Averaged to 0.44, if included return ratios of open spaces and BART, which are zero. For areas in Zone 1 Water Service Area where recycled water is used. ⁽e) For Cal-water Service Area, Zone 2 and 3 Water Service Areas, and areas in Zone 1 Water Service Area where recycled water is not used. | Table 3-5. ADWF Projections for Reasonably Foreseeable Development Projects in City Municipal Area | |--| |--| | Planning
Areas ^(a) | Name | Parcel Area, acres | Planned Dwelling
Units, DU | Housing Density,
DU/acre | Selected Land Use
Code | Total Water Demand, | Increase From
Existing Water
Demand, gpd ^(b) | Return-to-Sewer
Ratio | Total Sewer Flow,
gpd | Increase from
Existing Sewer Flow
gpd | |----------------------------------|--|--------------------|-------------------------------|-----------------------------|---------------------------|---------------------|---|--------------------------|--------------------------|---| | 1a | Outlets - Phase II | 17 | | | N/A | 12,813 | 12,813 | 0.79 | 10,120 | 10,12 | | 1b | Outlets - Phase I | 46 | | | N/A | 36,284 | 1,000 | 0.79 | 28,660 | 79 | | 2 | The Shoppes | 12 | | | BCP | 15,946 | 15,946 | 0.79 | 12,600 | 12,60 | | 3 | CrossWinds | 25 | | | BCP | 34,157 | 34,157 | 0.79 | 26,980 | 26,98 | | 4 | Sywest Driving Range | 21 | | | ВСР | 12,788 | 12,788 | 0.85 | 10,870 | 10,87 | | 5a | Oaks Business Park: Gillig | 38 | | | LII | 34,578 | 34,578 | 0.79 | 27,320 | 27,32 | | 5b | Oaks Business Park: Trammel Crow | 69 | | | LII | 62,464 | 62,464 | 0.79 | 49,350 | 49,35 | | 5c | Oaks Business Park: Remaining Area | 62 | | | LII | 55,635 | 55,635 | 0.79 | 43,950 | 43,95 | | 6 | Airport Master Plan (Hangars/Admin) | 23 | | | CF-AIR | 14,515 | 6,942 | 0.53 | 7,690 | 3,68 | | 7a | Livermore Valley Charter School: K-8 | 10 | | | N/A | 5,263 | 0 | 0.53 | 2,790 | | | 7b | Livermore Valley Charter School: Athletics | 12 | | | N/A | 0 | 0 | 0.00 | 0 | | | 7c | Livermore Valley Charter School: High School | 6 | | | N/A | 8,540 | 0 | 0.63 | 5,380 | | | 8 | Las Positas College | 147 | | | CF-JC | 40,642 | 10,601 | 0.63 | 25,600 | 6,68 | | 9 | Shea Homes, Sage | 35 | 476 | 14 | UH-3 | 59,220 | 59,220 | 0.75 | 44,415 | 44,41 | | 10 | Ponderosa | 6 | 26 | 5 | UMH | 12,003 | 10,406 | 0.52 | 6,300 | 5,46 | | 11 | KB Home | 3 | 58 | 17 | UH-3 | 11,775 | 11,775 | 0.73 | 8,650 | 8,65 | | 12 | Central Crossing | 5 | 49 | 10 | UH-2 | 14,057 | 12,270 | 0.63 | 8,860 | 7,73 | | 13 | Garaventa Hills | 32 | 42 | 1 | UL-1 | 64,709 | 64,709 | 0.37 | 23,780 | 23,780 | | 14 | Open Space | 40 | | | OSP-NA | 5,386 | 5,386 | 0.00 | 0 | | | 15 | 12 Single-Family Homes | 10 | 12 | 1 | UL-1 | 19,818 | 19,818 | 0.37 | 7,280 | 7,28 | | 16 | Open Space | 66 | | | OSP-NA | 8,906 | 8,906 | 0.00 | 0 | | | 17a | BART Site: 300 SF Homes | 56 | 300 | 5 | UMH | 120,013 | 118,033 | 0.53 | 63,010 | 61,970 | | 17b | Open Space | 129 | | | OSP-NA | 17,414 | 17,414 | 0.00 | 0 | | | 18 | Intel Site | 9 | | | LII | 9,224 | 4,480 | 0.79 | 7,290 | 3,54 | | 19 | Arroyo Vista Neighborhood Plan | 29 | 495 | 17 | UH-3 | 101,742 | 101,742 | 0.73 | 74,780 | 74,780 | | 20 | Bennett Drive | 13 | 436 | 34 | UH-5b | 57,808 | 57,808 | 0.74 | 42,490 | 42,49 | | 21 | Mc Grant Rent Corp | 112 | | | HII | 85,404 | 70,090 | 0.74 | 63,200 | 51,87 | | 22a | Brisa Neighborhood: 465 units | 34 | 465 | 14 | UH-3 | 93,673 | 46,305 | 0.74 | 68,850 | 34,03 | | 22b | Brisa Neighborhood: 46 units | 1.4 | 46 | 34 | UH-5b | 6,125 | 6,125 | 0.73 | 4,500 | 4,50 | | 23 | PG&E Training Site | 44 | | | HII | 33,809 | 32,314 | 0.74 | 25,020 | 23,91 | | 24 | 6877 Brisa | 7 | | | HII | 5,082 | 5,082 | 0.74 | 3,760 | 3,76 | | 25 | 7600 Hawthorne | 13 | | | HII | 9,756 | 9,756 | 0.74 | 7,220 | 7,22 | | 26 | 7600 Patterson Pass | 10 | | | HII | 7,576 | 7,576 | 0.74 | 5,610 | 5,61 | | 27 | Grove III | 16 | 58 | 4 | UM | 32,344 | 21,740 | 0.52 | 16,980 | 11,41 | | 28 | Ponderosa Vines | 5 | 49 | 10 | UH-2 | 13,328 | 13,328 | 0.63 | 8,400 | 8,40 | | 29 | Unnamed Development | 10 | 20 | 2 | SV-RDA | 22,712 | 22,712 | 0.37 | 8,350 | 8,35 | | 30 | New Private School | 122 | | | CF-E | 201,357 | 201,357 | 0.53 | 106,720 | 106,72 | | 31 | 32 Single-Family Homes | 9 | 32 | 4 | UM | 16,861 | 15,482 | 0.52 | 8,850 | 8,13 | | | Total | 1,303 | 2,564 | | | 1,363,730 | 1,190,758 | 0.63 | 865,625 | 744,69 | ⁽a) Locations of planning areas are based on Figure 3-4 and 3-5 in Water Master Plan. ⁽b) Water demand is decreased by 10% compare to water master plan to exclude water loss value. | | | Table 3-6. ADWF Projections for Re | easonably Fore | seeable Develop | ment Projects in | Cal Water Servi | ce Area | | | | | |----------------------------------|---|---|-----------------------|-------------------------------|--------------------------|------------------------------|---------|-------|-----------------|--|---| | Planning
Areas ^(a) | Name | Description | Parcel Area,
acres | Planned Dwelling
Units, DU | Housing Density, DU/acre | Recommended
Land Use Code | Flow Fa | | Total Flow, gpd | Increase from
Existing Flow,
gpd | Note | | 1 | VinSanto II | 18 single family houses | 4.90 | 18 | 4 | UM | 180 | | 3,240 | -, - | | | 2 | 740 Holmes Street | Redevelopment of 10-unit apartment building with a 24-bed residential care facility for seniors | 0.40 | 24 | 60 | UH-6 | 80 | - | 1,920 | 1,920 | Use UH-4 demand factor, since no demand factor available for UH-6. | | 3 | Pleasant View Road | Connecting 19 single family and development of 7 new ones | 10.00 | 3 | 15 | ULM | 140 | - | 3,640 | 3,640 | | | 4 | Sonoma Ave School, 6 du/dc | Redevelopment of school site with 54 single family detached houses, average density of 6 du/dc | 9.00 | 54 | 6 | UMH | 140 | - | 7,560 | 7,560 | | | 5 | Catalina Crossing | Redevelopment of office building with 31-townhouses | 2.45 | 31 | 13 | UH-2 | 140 | - | 4,340 | 4,340 | | | 6 | Barcelona Site | Development of 5 townhouses | 0.40 | 5 | 13 | UH-2 | 80 | - | 400 | 400 | Use UH-4 demand factor, since no demand factor available for UH-5a. | | 7 | Ruby Hill Site | Development of 11 Large lot single family, about 4,000 to 8,000 square feet each | 215.70 | 11 | 0 | UL-1 | 180 | 1 | 1,980 | 1,980 | | | 8 | SUB16-004, East of Ruby Hill Site | 5 single- family and one winery or 30-room inn and restaurant, each parcel 20 acres | 120.00 | 6 | 0 | UL-1 | 180 | - | 1,080 | 1,080 | | | 9 | 1591 Lomitas | Development of 10 single family, Average density of 2 du/ac | 4.90 | 10 | 2 | UL-2 | 180 | - | 1,860 | 1,800 | | | 10 | Chestnut Square | 116 multi-family/senior apartment and 44 townhouses | 4.50 | 160 | 36 | UH-5b | 80 | | 15,060 | 12,800 | Use UH-4 demand factor, since no demand factor available for UH-5b. | | 11 | 732 N K St | Development of 6 single family houses | 0.50 | 6 | 12 | UH-3 | 140 | - | 840 | 840 | | | 12 | Brighton | Development of 139 Detached houses under construction at 18 du/ac | 7.00 | 128 | 18 | UH-3 | 80 | - | 13,070 | 11,120 | | | 13 | Sunflower Hill Project | Development of 6 apartment building which includes 44 units | 2.00 | 44 | 22 | UH-4 | 80 | - | 3,560 | 3,520 | | | 14a | North of Portola | From residential land inventory | 11.90 | 185 | 16 | UH-3 | 140 | - | 25,900 | 25,900 | | | 14b | North of Portola | From residential land inventory | 2.00 | 40 | 20 | UH-3 | 140 | - | 5,880 | 5,600 | | | 15 | Primrose Childcare Facility | | 3.30 | 1 | 0 | CSGC | - | 250 | |
830 | | | 16a | First Street Corridor/ Auburn Grove Project | Development of 101 Townhouses | 4.70 | 101 | 21 | UH-4 | 80 | - | 8,080 | 8,080 | | | 16b | First Street Corridor GP Amendment | Townhouses at 16du/ac | 17.80 | Unknown | | UH-3 | - | 2,870 | | | | | | Total | | 506.40 | 2,622 | | | | | 152,680 | 145,740 | | (a) Locations of planning areas are shown in Figure 3-3. | | Table | 3-7. ADWF Proj | Table 3-7. ADWF Projections for Vacant Areas | t Areas | | | | |---|--|----------------|--|--------------------|----------------------------------|------------------|-----------------| | Land Use Category | | | Planned Dwelling | | Flow Factor, | | | | (Total Sewer Service Area) | Land Use Designation | Land Use Code | Units, DU | Parcel Area, acres | gpd per unit/gpad ^(b) | ع(_{b)} | Total Flow, gpd | | | Rural Residential | RR | 62 | • | 180 | • | 11,160 | | | Urban Low Residential – 1 ^(a) | UL-1 | 153 | • | 180 | • | 27,500 | | | Urban Low Residential – 2 | UL-2 | 22 | • | 180 | • | 3,960 | | | Urban Low Medium Residential | NTN | 12 | • | 180 | • | 2,160 | | - C - C - C - C - C - C - C - C - C - C | Urban Medium Residential | MU | 132 | • | 180 | • | 23,800 | | Residential | Urban Medium High Residential | HWN | 191 | • | 180 | • | 34,400 | | | Urban High Residential – 2 | UH-2 | 225 | • | 140 | • | 31,500 | | | Urban High Residential – 3 | E-HN | 675 | • | 140 | • | 94,500 | | | Urban High Residential – 4 | UH-4 | 1191 | • | 80 | • | 95,300 | | | Residential Development Area | SV-RDA | 66 | • | 180 | • | 17,800 | | Downtown | Downtown | VΩ | • | 2.50 | • | 230 | 2,000 | | | Neighborhood Commercial | NC | 1 | 3.60 | • | 200 | 1,800 | | | Service Commercial | SC | 1 | 31.80 | • | 200 | 6,400 | | Collineiciai | Highway Commercial | 오 | 1 | 4.30 | • | 150 | 650 | | | Community Serving General Commercial | Sec | 1 | 9.20 | • | 250 | 2,300 | | | Business and Commercial Park | BCP | - | 160.40 | • | 510 | 81,800 | | Industrial | Low Intensity Industrial | II | - | 16.20 | • | 420 | 6,800 | | | High Intensity Industrial | IIH | - | 129.00 | • | 009 | 77,400 | | | Elementary School | GF-E | ı | 2.00 | • | 200 | 2,500 | | Community | Civic Center | CF-CC | - | 0.70 | • | 190 | 220 | | Facility | Airport | CF-AIR | - | 35.90 | - | 100 | 3,590 | | | Cemetery | CF-CE | - | 1.60 | - | 30 | 20 | | South Livermore Valley | Vineyard Commercial | SV-VC | - | 16.90 | - | 200 | 8,450 | | | Total | | 2762 | 417.10 | 1 | - | 536,370 | (a) Including Ruby Hill Developments (b) gpd = gallons per day and gpad = gallons per acre per day ADWF projections were developed for point sources into the collection system from large dischargers, and they were calculated independently of the General Plan land use projections. Point source flows into the collection system are detailed in Table 3-8. Table 3-8. ADWF Point Sources | Discharger | 2013
Calibrated, gpd | 2015
Calibrated, gpd | Existing
Rebounded, gpd | Buildout
Projection, gpd | |------------------------|-------------------------|-------------------------|----------------------------|-----------------------------| | LLNL and SNL | 240,000 ^(a) | 225,000 ^(a) | 295,600 ^(b) | 295,600 ^(b) | | Ruby Hill Developments | 133,000 ^(c) | 105,000 ^(c) | 126,000 ^(c) | 155,000 ^(d) | | Total | 373,000 | 330,000 | 421,600 | 450,600 | Source: Water Billing Records ADWF projections for the entire sewer service area, incorporating all of the sources of flow projection data described above, are summarized in Table 3-9. Table 3-9. ADWF History and Projection Summary | Area Description | Service Area | 2013
Calibrated,
mgd | 2015
Calibrated,
mgd | Existing
Rebounded
Projection,
mgd | Buildout
Projection,
mgd | |---|--|----------------------------|----------------------------|---|--------------------------------| | | City Municipal Area | 2.51 | 2.37 | 2.38 ^(a) | 2.38 | | | CalWater Service Area | 3.94 | 3.32 | 3.90 ^(a) | 3.90 | | Existing Developed Areas | Ruby Hill Developments,
and National
Laboratories ^(b) | 0.37 | 0.33 | 0.42 | 0.42 | | | City Municipal Area ^(c) | 1 | 1 | - | 0.74 | | Reasonably Foreseeable | CalWater Service Area ^(d) | 1 | 1 | - | 0.15 | | Development Projects | Ruby Hill Developments, and National Laboratories | - | - | - | - | | | City Municipal Area | - | - | - | 0.20 | | Vacant Areas ^(e) | CalWater Service Area | - | - | - | 0.31 | | 1 4 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Ruby Hill Developments, and National Laboratories | - | - | - | 0.03 | | Total | | 6.82 | 6.02 | 6.71 | 8.14 | Refer to Table 3-4 Value given in 2004 Master Plan. It is assumed that LLNL and SNL do not necessarily behave like other customer classes. ⁽c) 700 single-family residences assumed to active. Calculated based on ADWF factors per residence of 190, 150, and 180 in 2013, 2015, and Existing Rebounded, respectively. ⁸⁵⁰ single-family residences plus Reasonably Foreseeable Development Projects assumed to be active. Refer to Table 3-8 Refer to Table 3-5 Refer to Table 3-6 #### 3.2.2 PDWF Development PDWF development within the sewer service area is described below. #### 3.2.2.1 Historical PDWF The daily hydrographs for flows entering the WRP during the non-precipitation days of 2013 and 2015 were averaged to create composite hydrographs for 2013 and 2015. These hydrographs are presented on Figure 3-4. The ADWF, PDWF, and resulting peak factor taken from these composite hydrographs are summarized in Table 3-10. The Dry Weather Peak Factors seen for 2013 and 2015 are typical for collection systems similar to the City's. | | Table 3-10. Histor | ical PDWF at WRP | | |------|--------------------|------------------|----------------------------| | Year | ADWF, mgd | PDWF, mgd | Dry Weather Peak
Factor | | 2013 | 6.82 | 9.15 | 1.34 | | 2015 | 6.02 | 8.13 | 1.35 | #### 3.2.2.2 Projected PDWF The dry weather peaking factor is not expected to vary significantly in the future, and a value of 1.35 at the WRP was retained for projections. The projected PDWF in the collection system is presented in Table 3-11. | Table 3-11. Projected PDWF at WRP | | | | | | |-----------------------------------|-----------|-----------|----------------------------|--|--| | Year | ADWF, mgd | PDWF, mgd | Dry Weather Peak
Factor | | | | 2013 (Calibrated) | 6.82 | 9.15 | 1.34 | | | | 2015 (Calibrated) | 6.02 | 8.13 | 1.35 | | | | Existing Rebounded (Projected) | 6.71 | 9.05 | 1.35 | | | | Buildout (Projected) | 8.14 | 10.99 | 1.35 | | | 3-13 From 2020 Flow Monitoring: Sites 1-4 show PDWF/ADWF= 1.7-1.45 (lower flow - higher flow) Use 1.45, matches well with 1.35. #### 3.2.3 PWWF Development Historical PWWF values and design PWWF development are discussed below. ### 3.2.3.1 Historical PWWF The 2013 to 2015 timeframe over which the ADWF and PDWF values were developed contained few historical wet weather values because of the on-going drought. Two similar storms, one in 2013 and one in 2015, consisted of a peak rainfall of 0.46 inches over 24 hours. Both of these storms generated approximately 6,200,000 gpd of RDII as measured at the WRP. Therefore, it appears that 6,200,000 gpd of RDII is approximately a two-year return frequency storm result. #### 3.2.3.2 Projected PWWF Because of the lack of wet weather flow monitoring data, it was not in the scope of work for this Sewer Master Plan to do a full assessment of RDII factors and PWWF. This full assessment will be performed in the future when flow monitoring is implemented. Because of this fact and because of the few wet weather events captured in flow data at the WRP, it was most appropriate to retain the RDII factor of 800 gpad established for the 2004 Master Plan. Based on the amount of RDII generated by these factors compared to the limited data generated in 2013 and 2015, it is estimated that this value of RDII corresponds to a 5-year return frequency storm for the City's collection system. The 2004 Master Plan indicated that these factors represent a 5-year to 10-year return frequency storm. Because of evidence of increased winter flows seen in the billing data for the LLNL and SNL areas, reduced RDII factors were established for these areas, whereas the 2004 Master Plan excluded the RDII calculations entirely. The existing RDII factors and the resulting RDII can be found in Table 3-12. The RDII value of 8,612,000 gpd is higher than any RDII values measured at the WRP in 2013 and 2015, and this RDII value, when applied to the existing rebounded PDWF value, results in a design PWWF that is higher than any flow measured at the WRP in 2013 or 2015. | Table 3-12. Existing RDII Generation | | | | | | | | |--------------------------------------|------------|-------------------------------|-----------|--|--|--|--| | Description | Area, acre | Existing
RDII Factor, gpad | RDII, gpd | | | | | | Existing Non-Laboratory Areas | 10,644 | 800 | 8,515,000 | | | | | | Existing LLNL and SNL Areas | 1,215 | 80 | 97,000 | | | | | | Total Existing Areas | 11,859 | - | 8,612,000 | | | | | Because RDII increases over time as a collection system ages, buildout RDII generation factors were increased to determine projected build-out PWWF for design flows. The increased RDII value was estimated to be on the upper end of RDII rates for aging infrastructure in Northern California. With a focused wet weather flow monitoring plan as described in Chapter 6, the City will be able to more precisely determine RDII factors across the collection system for new and aging infrastructure. New development being brought into service will be served by new, relatively defect-free infrastructure, and is therefore expected to maintain an 800 gpad RDII generation factor. Buildout RDII generation can
be found in Table 3-13. | Table 3-13. Buildout RDII Generation | | | | | | | | |--------------------------------------|------------|-------------------|------------|--|--|--|--| | Description | Area, acre | RDII Factor, gpad | RDII, gpd | | | | | | Existing Non-Laboratory Areas | 10,644 | 1250 | 13,305,000 | | | | | | Existing LLNL and SNL Areas | 1,215 | 125 | 152,000 | | | | | | Future Development | 2,053 | 800 | 1,642,000 | | | | | | Total Buildout Areas | 13,912 | - | 15,099,000 | | | | | The projected PWWF design flows that result from the RDII generation described above are shown in Table 3-14. A PWWF value of 17.66 mgd will be used to evaluate the hydraulic capacity of the collection system under existing conditions, and a value of 26.09 mgd will be used to evaluate the collection system under future conditions. Although the ADWF values projected for this Sewer Master Plan are lower than those projected for the 2004 Master Plan, the PWWF are slightly higher owing to the increased projected RDII. A priority recommendation of this Sewer Master Plan will be implementation of a comprehensive flow monitoring program to establish RDII characteristics by basin and sub-basin throughout the City's sewer service area. | Table 3-14. Projected PWWF (Design Flows) | | | | | | | |---|-----------|-----------|-----------|-----------|----------------------------|--| | Year | ADWF, mgd | PDWF, mgd | RDII, mgd | PWWF, mgd | Wet Weather
Peak Factor | | | Existing Rebounded | 6.71 | 9.05 | 8.61 | 17.66 | 2.63 | | | Buildout | 8.14 | 10.99 | 15.10 | 26.09 | 3.20 | | - 1. Refer to Table 3-5 for ADWF projections for Reasonably Foreseeable Development Projects in City Municipal Planning and Vacant Parcels City Municipal Area - Reasonably Forseeable Development Projects - Urban Low Residential #2 1.5-2.0 du/acre (UL-2) - Urban Low Medium Residential (ULM) - Urban Medium Residential (UM) - Urban Medium High Residential (UMH) - Urban High Residential #3 14-18 du/acre (UH-3) - Urban High Residential #2 8-14 du/acre (UH-2) - Downtown Area Specific Plan (DA) - Parks, Trailways, Recreation Areas (OSP) - Residential Development Area (RDA) - Notes: 1. Refer to Table 3-6 for ADWF projections for Reasonably Foreseeable Development Projects in CalWater Figure 3-3 **Planning and Vacant Parcels CalWater Service Area** #### **CHAPTER 4** ## **Collection System Design and Performance Criteria** The Sewer Master Plan utilizes existing and future design flows to evaluate the capacity requirements of the City's collection system. Chapter 4 summarizes the design flow factors that were developed in detail in Chapter 3. In addition, this chapter summarizes the performance criteria by which the collection system performance is evaluated. The performance criteria address the gravity mains, lift stations, and force mains. Where the performance evaluation identifies recommended improvements, these improvements shall be designed with the goal of being in accordance with the City's current facility planning guidelines, standard specifications and details, and development plan check and proceeding manual. #### **4.1 DESIGN FLOW FACTORS** ADWF, PDWF, and PWWF design factors are presented below. #### 4.1.1 ADWF Generation Design Factors The ADWF Generation Design Factors for the General Plan Land Use contained within the City's Sewer Service Area are presented in Table 4-1. These factors are presented in terms of dwelling units for residential development, and gross area (acreage) for non-residential development. The calculation of these factors is detailed in Chapter 3. As discussed in that chapter, these factors account for both a "rebound" in water demand from drought conditions and a small increase in Return-to-Sewer ratios from those of pre-drought conditions. #### 4.1.2 PDWF Design Factors For the Sewer Master Plan, a standard method was utilized for calculating PDWF by applying a diurnal pattern to the ADWF for each collection system user. The diurnal pattern approximates the variation in wastewater discharge over a typical 24-hour period, and varies according to whether the user is primarily residential, commercial or industrial. These design diurnal patterns are independent of location within the collection system, and provide all new development and growth with consistent peak factors typical of their usage patterns. The design residential diurnal pattern can be seen on Figure 4-1. The industrial diurnal pattern can be seen on Figure 4-2. Finally, the commercial diurnal pattern can be seen on Figure 4-3. These patterns were developed based upon previous flow monitoring data in conjunction with industry standards. When the diurnal patterns described here are applied appropriately to individual sewer loads across the sewer service area, flow attenuation and time of travel considerations result in the blended diurnal pattern at the WRP described in Chapter 3. #### 4.1.3 PWWF Design Factors As discussed in Chapter 3, PWWF is calculated by adding RDII to the PDWF. For this Sewer Master Plan, the design RDII factor for new development is 800 gpad. Existing development is expected to generate 800 gpad under existing timeframe evaluations, and 1,250 gpad under future timeframe evaluations. The increase in RDII generation is attributed to the physical deterioration of aging infrastructure for existing development and infrastructure. Based upon historical flow data, this rate constitutes approximately a 5-year return frequency storm. | | Table 4-1. Design ADWF Ge | eneration Factors | | |-------------------------|--------------------------------------|-------------------|--------------------------------------| | Land Use Category | Land Use Designation | Land Use Code | Design ADWF Factors,
gpd per unit | | , | Rural Residential | RR | 180 | | | Urban Low Residential – 1 | UL-1 | 180 | | | Urban Low Residential – 2 | UL-2 | 180 | | | Urban Low Medium Residential | ULM | 180 | | | Urban Medium Residential | UM | 180 | | Residential | Urban Medium High Residential | UMH | 180 | | | Urban High Residential – 1 | UH-1 | 140 | | | Urban High Residential – 2 | UH-2 | 140 | | | Urban High Residential – 3 | UH-3 | 140 | | | Urban High Residential – 4 | UH-4 | 80 | | | Residential Development Area | SV-RDA | 180 | | | | | Design ADWF Factors, | | Land Use Category | Land Use Designation | Land Use Code | gpad | | Downtown | Downtown | DA | 790 | | | Neighborhood Commercial | NC | 500 | | | Service Commercial | SC | 200 | | Commercial | Highway Commercial | HC | 150 | | | Office Commercial | OC | 730 | | | Community Serving General Commercial | CSGC | 250 | | Mixed Use | Neighborhood Mixed Medium Density | NMM | 2,650 | | | Business and Commercial Park | BCP | 510 | | Industrial | Low Intensity Industrial | LII | 420 | | | High Intensity Industrial | HII | 600 | | | Elementary School | CF-E | 500 | | | Intermediate School | CF-I | 500 | | | High School | CF-H | 500 | | | School General | CF-S | 500 | | Community | Research and Development | CF-R&D | 200 | | Facility | Fire Station/ Government Service | CF | 440 | | | Hospital | CF-HOSP | 4,170 | | | Civic Center | CF-CC | 790 | | | Airport | CF-AIR | 100 | | | Cemetery | CF-CE | 30 | | | Limited Agriculture | LDAG | - | | | Hillside Conservation | HLCN | - | | Open Space | Large Parcel Agriculture | LPA | - | | | Agriculture/Viticulture | AGVT | - | | | Parks, Trailways, Recreation Areas | OSP | - | | Courtle I have made and | Vineyard Commercial | SV-VC | 500 | | South Livermore Valley | Agriculture/Viticulture | SV-AGVT | - | | v alley | Agricultural Preserve | SV-AP | - | #### **4.2 GRAVITY MAIN PERFORMANCE CRITERIA** The City uses a combination of capacity and surcharge performance criteria to evaluate gravity main performance in the collection system. These criteria are detailed below. #### 4.2.1 Capacity Calculation Gravity main flow capacities depend on the roughness of the pipe interior, its geometric configuration (cross-section and length) and slope. The Continuity Equation and the Manning Equation for steady-state flow are used to calculate flow in a gravity main: ``` Continuity Equation: Q = V \times A where: Q = \text{peak flow, cubic feet per second (cfs)} V = \text{velocity, feet per second (fps)} A = \text{cross-sectional area of pipe, sq ft} Manning Equation: V = (1.486 \times R^{2/3} \times S^{1/2})/n where: V = \text{velocity, fps} n = \text{Manning's coefficient of friction} R = \text{hydraulic radius (area divided by wetted perimeter), ft} S = \text{slope of pipe, feet per foot} ``` #### 4.2.2 Manning Coefficient (n) The Manning Coefficient 'n' is a friction coefficient and varies with respect to pipe material, size of pipe, depth of flow, smoothness of pipe and joints, and extent of root intrusion. For sewer pipes, the Manning coefficient typically ranges between 0.011 and 0.017, with 0.013 being a typical value used for collection system master planning. The default value for the Manning Coefficient used in this Sewer Master Plan is 0.013. #### 4.2.3 Capacity Performance Criteria The primary criterion used to evaluate gravity mains is the design (PWWF) flowrate (q) to full pipe flow (Q) ratio (q/Q). When q/Q > 1.0, the design flowrate in the gravity main exceeds the full pipe capacity for that gravity main, and the gravity main is deemed to have insufficient capacity. Gravity mains with insufficient capacity will be categorized into two groups including: - 1. Bottleneck minor surcharging and lower priority; and - 2. Surcharged conditions exceeding those allowed in Section 4.2.4 and higher priority. For all parallel, replacement, and new gravity main construction, the gravity main shall be designed such that q/Q does not exceed 0.75. The minimum diameter of such construction shall be 8-inch. #### 4.2.4 Surcharge Performance Criteria Surcharging occurs when the hydraulic grade line of the flow is above the crown of a gravity main. Although surcharging
is primarily created by gravity mains with insufficient capacities, surcharging can also be created by gravity main alignment, changes in flow direction, and other collection system configurations. In the City's collection system, surcharging greater than 2.0 feet over the crown of a gravity main is not allowed and requires correction when identified. Furthermore, surcharging that results in a hydraulic grade line being closer than 3.0 feet to the ground surface elevation is not allowed, regardless of the depth of the surcharging above the gravity main crown. #### 4.3 LIFT STATION PERFORMANCE CRITERIA Lift station holding and pumping capacity criteria are described below. #### 4.3.1 Lift Station Holding Criteria The holding volume in a wet well that has an overflow relief mechanism or standby power shall be equivalent to two hours accumulation of the design flow from the fully developed area tributary to the lift station. Wet wells that do not have overflow relief or standby power shall have a holding volume equivalent to four hours accumulation of the design flow from the fully developed area tributary to the lift station. #### 4.3.2 Lift Station Capacity Criteria All sewage lift stations shall have sufficient capacity to pump the peak design flow with the largest pump out of service (firm capacity). #### 4.4 FORCE MAIN PERFORMANCE CRITERIA Force main hydraulic criteria are typically based on velocity in the force main. Force mains are typically sized such that the velocity in the force main will not exceed 7 fps under peak conditions and will not be less than 2 fps under minimum flow conditions. The maximum velocity prevents excessive wear and tear on the force main, and limits excessive energy expenditures in the lift station due to the high losses that result from higher velocities. The minimum velocity provides self-cleaning and minimize the settlement of solids. For the Sewer Master Plan, the force main design criteria of a maximum velocity of 7 fps under peak operating conditions and 2 fps under minimum flow conditions are applied. #### 4.4.1 Head Loss The Hazen-Williams formula is used to calculate the head loss in force mains due to velocity friction. The formula is: Head loss Equation: $$h_f = \frac{3.022 \times V^{1.85} L}{C^{1.85} \times D^{1.17}}$$ where: $$V = \text{velocity, fps}$$ $$C = \text{Hazen-Williams roughness coefficient}$$ $$D = \text{diameter, ft}$$ $$L = \text{pipe length, ft}$$ The value of the Hazen-Williams roughness coefficient varies with the type of pipe material and is influenced by the type of construction and age of the pipe. A value of 120 is assumed to be the default value for this Sewer Master Plan. #### 4.4.2 Minor Losses In addition to the friction energy lost due to viscous effects, friction losses also result from fittings in the line, changes in direction, and changes in flow area. These losses are known as minor losses and can be calculated with two methods of equivalent lengths and loss coefficients. With the method of equivalent lengths, each fitting or other flow variation is assumed to produce friction equal to the pipe wall friction from an equivalent length of pipe. The equivalent for all minor losses are added to the pipe length in the Darcy equation. This method is usually limited to the turbulent flow. Total Length Equation: $$L_t = L + \sum L_e$$ The generic table of equivalent length is located in the City's Facility Planning Guidelines. In the method of loss coefficients, each fitting has a loss coefficient, K, associated with it, which, when multiplied by the kinetic energy, gives the loss. Therefore, a loss coefficient is the minor loss expressed in fraction of the velocity head, h_v . Minor Loss Equation: $$h_m=K \times h_v$$ The loss coefficient for any minor loss can be calculated if the equivalent length is known. Loss Coefficient Equation: $$K=f \times L_e/D$$ where: $$f = friction \ factor \\ D = diameter, \ ft \\ L_e = equivalent \ length, \ ft$$ For this hydraulic analysis, the method of equivalent lengths was used to account for minor losses. #### CHAPTER 5 ## **Hydraulic Model Update and Capacity Evaluation** As part of this Sewer Master Plan, an updated hydraulic model of the City's sanitary sewer system has been developed and utilized for the collection system hydraulic analysis. This chapter contains a summary overview of the model software, the modeled system network, future design flow allocation, and hydraulic capacity evaluation using the design flows described in Chapter 4. #### **5.1 MODEL DESCRIPTION** As part of the 2004 Master Plan, a hydraulic model of the City's collection system was developed utilizing H2OMap Sewer Pro software (H2OMap Sewer), a product of Innovyze, Inc. H2OMap Sewer was developed specifically for collection system capacity analysis and is widely used in the industry. The H2OMap Sewer hydraulic model, updated as described below, has been used in this Sewer Master Plan to identify hydraulic deficiencies under existing and future conditions, and to evaluate potential relief sewers or other infrastructure improvements to address the possible hydraulic deficiencies. There are two types of hydraulic simulations used to assess the capacity of collection systems: (1) steady state/static simulations; and (2) extended period/dynamic simulations. Steady state simulations represent a snapshot of the system performance at a given point in time under specific sewage generation conditions (typically a peak flow condition). Extended period/dynamic simulations employ a continuous simulation of the changes in system flow rates over time, and are typically used to analyze the operational performance of the system over a 24-hour or longer period. Extended period/dynamic simulation requires more extensive data input than a steady-state simulation, including appropriate 24-hour diurnal patterns for various land use categories within the collection system, as well as a representation of time-varying collection system response to rainfall. For the purposes of this Sewer Master Plan, as with the 2004 Master Plan, extended period/dynamic simulations have been used to perform hydraulic evaluation of the City's collection system over a 60-hour period. #### **5.2 HYDRAULIC MODEL UPDATE** This section describes the collection system hydraulic model in detail, describes the updates made to the hydraulic model as part of this Sewer Master Plan, and provides a summary of the existing and future timeframe flow allocations made in the hydraulic model. #### 5.2.1 Model Network Revisions The hydraulic model developed for the 2004 Master Plan was a skeletonized model that contained only the trunk gravity mains from the City's collection system. Small diameter gravity mains were excluded from the hydraulic model. For this Sewer Master Plan, the City desired a more comprehensive evaluation of collection system capacity, including the small diameter gravity mains that predominate the collection system. Further, the City desired that a clear link be developed between individual parcel flows and their connection to the collection system. Such a link requires that all gravity mains, regardless of diameter, be included in the hydraulic model. Therefore, as part of this Sewer Master Plan, the hydraulic model has been updated to include a network that contains all collection system gravity mains. Further, the model was updated so that all infrastructure, including gravity mains, lift stations, and force mains, is up to date and represents the collection system as it currently exists in the field. #### Hydraulic Model Update and Capacity Evaluation The City has invested considerable effort in developing and maintaining a GIS database of the collection system, and the collection system GIS is considered the primary data source for the linear assets (gravity mains and force mains) in the collection system. To facilitate the update of the hydraulic model, the 2004 Master Plan hydraulic model was compared against the GIS data (current as of January 2017) to determine data gaps and data discrepancies to be updated in the model. The comparison yielded the following general classes of updates to the hydraulic model: - Structural improvements or developments that occurred after the 2004 Master Plan were updated into the model. - Discrepancies in gravity main diameters, gravity main invert elevations, and manhole rim elevations between the hydraulic model and the GIS were identified. Per City staff direction, data in the GIS was considered preeminent and updated into the hydraulic model. - Infrastructure that appeared in the hydraulic model, but not in the collection system GIS, was identified and investigated on a case-by-case basis to determine which source correctly represented field conditions. The hydraulic model was updated as appropriate. In addition to the updates described above, the small diameter gravity mains that were not included in the 2004 Master Plan hydraulic model, along with the manholes associated these gravity mains, were imported into the hydraulic model. This data was imported in a manner to preserve a one-to-one relationship with the City's GIS using the following methods: - Manhole and gravity main unique GIS identifiers (ID) were preserved as unique hydraulic model identifiers where possible. In some cases, multiple manholes or gravity mains had the same identifier in GIS. Because the hydraulic model does not allow non-unique identifiers, the identifier of one of the elements was altered in the hydraulic model as follows: - Manholes with the same GIS ID were renamed to their GIS ID concatenated with their unique old facility ID; and - Pipes with the same GIS ID were renamed to their GIS ID concatenated with their unique old facility ID. - The hydraulic model requires an upstream manhole and downstream manhole for each gravity main. In some cases, this geometry was not present in the GIS. In these cases, the geometry was fixed in the
hydraulic model as follows: - In cases of a missing manhole (i.e., two proximate gravity mains with no manhole between them), the appropriate manhole was created in the model. A unique identifier was created for this new manhole by adding an alphabetical suffix to the identifier of the nearest existing manhole in the model. - In cases of a manhole drawn over a gravity main that was not properly "split" to reflect the presence of the manhole, the gravity main was split and snapped to the manhole to reflect the proper upstream and downstream geometry in the network. Because splitting a gravity main creates a new gravity main in the model, the new gravity main was given a unique identifier consisting of the original identifier with the addition of an alphabetical suffix. Inverts for the split gravity main were determined through interpolation using the length and slope of the original gravity main. - Because the small diameter gravity mains were being imported into the hydraulic model for the first time, some of the gravity mains did not have the upstream and downstream invert elevation data required for the hydraulic model. As part of its ongoing comprehensive collection system management policies, the City will be collecting and populating this invert elevation data. To facilitate the timely update of the hydraulic model, the following assumptions were made to provide preliminary values for the missing invert elevation: - Where one invert elevation (either upstream or downstream) was known along with the gravity main slope, the second invert elevation was calculated; - Where an invert elevation was unknown on one gravity main, but the corresponding invert elevation was known on the gravity main sharing the manhole, the corresponding invert elevation was assigned (i.e., invert continuity across manholes was assumed); and - Where the data listed above was not available, inverts were calculated assuming minimum slopes of gravity mains from the last known point. The City maintains minimum slope requirements for gravity mains based upon diameter in the City's current Facility Planning Guidelines document. All assumed invert values that were developed as described above were documented and prioritized for City investigation going forward. This documentation can be found in Appendix A. In addition to the updates described above, basic data checks were conducted on the updated hydraulic model for missing data and physical inconsistencies (e.g., reverse pipe slopes or diameter changing from larger to smaller rather than vice versa). Figure 5-1 presents the updated model network for the Sewer Master Plan hydraulic evaluation. It is recommended that the City perform field verifications of the high priority infrastructure identified in the gap analysis included in Appendix A and incorporate into the hydraulic model for future updates to improve the accuracy of the model. #### 5.2.2 Hydraulic Model Flow Updates Chapter 3 Service Area Sewer Flows detailed the development of existing rebounded and build-out design flows within the City. The following sections describe how these flows were incorporated into the hydraulic model. #### 5.2.2.1 ADWF Updates ADWF values were developed on an individual parcel basis. These values were imported into the hydraulic model through the establishment of a parcel-to-manhole link made possible by the inclusion of all gravity mains and all manholes in the model. The parcel-to-manhole link was initiated using GIS proximity analysis to identify the manhole closest to each parcel. Manual review was used to refine areas for which proximity analysis was too imprecise. Such areas included those with parallel gravity mains, or those areas with both trunk and collector gravity mains. The parcel-to-manhole linkage established a loading manhole for each parcel in the City. ADWF values were summarized by manhole and these summarized flows were imported into the hydraulic model. The parcel-to-manhole linkage is detailed in Appendix A. The H2OMap Sewer modeling software contains 10 loading fields that can be used to organize flows being imported into the model. For the City's hydraulic model, flows were organized into the loading columns as shown in Table 5-1. Existing flows in the hydraulic model consist of loads from Load 1, Load 2, Load 3, and Load 8. Future flows are composed of loads from Load 1, Load 2, Load, 3, Load 4, Load 5, Load 6, Load 7, and Load 9. | Table | 5-1. Load Column Description in the Hydraulic Model | |-------------|--| | Load Column | Load Description | | Load 1 | ADWF of Existing Developed Areas in City Municipal Water Service Area (a) | | Load 2 | ADWF of Existing Developed Areas in Cal Water Service Area ^(a) | | Load 3 | Existing Point Sources and Existing ADWF of Reasonably Foreseeable Development Projects ^(b) | | Load 4 | Future ADWF of Reasonably Foreseeable Development Projects in City Municipal Water Service Area ^(c) | | Load 5 | Future ADWF of Reasonably Foreseeable Development Projects in Cal Water Service Area ^(c) | | Load 6 | Future ADWF of Vacant Areas in City Municipal Area and Ruby Hill Development | | Load 7 | Future ADWF of Vacant Areas in Cal Water Service Area | | Load 8 | Existing RDII | | Load 9 | Future RDII | | Load 10 | Blank for Future Use | ⁽a) Existing developed areas include active parcels that have not been identified for Reasonably Foreseeable Development projects. ⁽b) Point sources include LLNL and SNL flows. ⁽c) The total future load for a specific Reasonably Foreseeable Development Project includes an existing load in Load 3 plus a future load in Load 4 or Load 5. #### 5.2.2.2 PDWF Updates To generate PDWF from ADWF in the hydraulic model, diurnal curves were applied to ADWF values. As described in Chapter 4, the City's design and performance standards include standard curves for residential, industrial, and commercial discharges. The appropriate diurnal curve was applied in the model based upon land use. #### 5.2.2.3 PWWF Updates Chapter 3 describes the method by which RDII was calculated for the City's collection system. RDII generation per acre has been established for existing and future conditions. The acreage tributary to each manhole was summarized and then multiplied by the RDII generation factor. The resulting RDII flow value was then loaded to each individual manhole. As shown in Table 5-1, individual flow load columns were reserved for existing and future RDII values, respectively, in the hydraulic model. #### **5.3 EXISTING CAPACITY EVALUATION** This section presents the results of the capacity evaluation of the City's collection system under existing flow conditions. Collection system capacity for gravity mains, lift stations, and force mains was assessed with respect to the system's performance under the existing PWWF design flow condition described in Chapter 3, using the design and performance criteria described in Chapter 4. #### 5.3.1 Existing Gravity Main Hydraulic Evaluation Gravity mains in the City's collection system exceed the performance criteria under existing rebounded design flows in several locations. Because the City's design and performance criteria for the gravity collection system include both flow criteria in the gravity mains, as well as surcharge depth criteria in the manholes, incidences of performance criteria exceedance have been identified for both gravity mains and manholes. The gravity mains and manholes that fail to meet performance criteria are displayed on Figure 5-2. The gravity mains that fail to meet performance criteria under existing design flows can be found in Table 5-2. It should be noted that the hydraulic analysis identifies every incidence of the design and performance criteria being exceeded. In the large majority of these incidences, the performance criteria are exceeded in an isolated gravity main that has a low or even flat slope. In most cases, these low and flat slope gravity mains are small diameter gravity mains that were brought into the model for the first time as part of this Sewer Master Plan, and which have poorly verified invert elevation data. It is anticipated that these identified gravity mains do not represent true hydraulic bottlenecks in the collection system. Therefore, these gravity mains have not been included in this Sewer Master Plan as recommended improvements projects. However, it is recommended that in the future the City perform field verification of these isolated mains so their true capacity can be determined and the assumption of no hydraulic bottleneck confirmed. #### **5.3.2 Existing Lift Station Hydraulic Evaluation** As described in Chapter 4, the City's performance standards require that all collection system lift stations have sufficient capacity to convey design flows with the largest pump out of service, defined as the "firm capacity" of the lift station. Each existing lift station's firm capacity was compared to the existing design flow conveyed to the lift station. If the designed flow was greater than the lift station's firm capacity, then the lift station was considered to have insufficient capacity. The hydraulic model indicates that all of the collection system lift stations currently have sufficient firm capacity to convey existing design flows, as shown in Table 5-3. The City's performance standards further require that the holding volume in a wet well that has an overflow relief mechanism or standby power shall be equivalent to two hours accumulation of the design flow. Wet wells that do not have overflow relief or standby power shall have a holding volume equivalent to four hours accumulation of the design flow The City's lift stations do not meet the holding volume performance standards. #### 5.3.3 Existing Force Main Hydraulic Evaluation Peak force main velocities are provided in Table 5-3. As can be seen, no force mains exceed
the maximum peak velocity criteria of 7 fps under existing conditions with the exception of the 8-inch diameter portion of the Airport Lift Station force main which only slightly exceeds the criteria with a value of 7.3 fps. All force mains achieve a minimum velocity of 2.0 fps when operating at firm capacity. The hydraulic model, particularly the elements concerning lift station and force main capacity analysis, is a planning-level tool and is not intended for operational analysis. An operational analysis of the lift station and force main performance should be performed to confirm that the lift stations and force mains are operating as intended and planned. | Marie Mari | Gravity Main ID | Upstream Manhole ID | Table 5-2. Gravity Mains Not Meeting Under Existing Rebounded Fl | | Performance Criteria ow Conditions (LF) Diameter in | ٥ | escription | |--|------------------------------|--------------------------|--|------------|---|--|---| | PRINCENTING PRINCENT PRINCENTING PRI | JLS5C2P0398 | JLS5C2F001 | JLS5C2037 | 86 | 39 | Insufficient Slope: R | Recommended for Inspection | | Pre98-677074 Pre98-67707 | PPS5F2TP6057 | PPS5F2T002 | PPS5F2T001A | 8 8 | 30 | Insufficient Slope: R | Recommended for Inspection | | CONTRICTORY | PPS4G3TP2310 | PPS4G3T004 | PPS4G3T003 | 154 | 27 | Insufficient Slope: R | Recommended for Inspection | | Control Cont | D1S6E11P7077
PPS4G3TP1715 | D1S6E11027
PPS4G3T017 | D1S6E11026
PPS4G3T016 | 120 | 24 | Insufficient Slope: R
Insufficient Slope: R | Recommended for Inspection | | CECSTONIONE | DTS5E3TP2799
DTS6E2TP5942 | DTS5E3T007
DTS5E3T034 | DTS5E3T006
DTS5E3T033 | 330 | 18 | Insufficient Slope: R
Insufficient Slope: R | Recommended for Inspection | | PRESENCE | ECS7D3TP5113 | ECS7D3T005 | ECS7D3T004 | 180 | 2 0 | Insufficient Slope: R | Recommended for Inspection | | CESSEDOROR CESSEDO | PPS4G1TP1604 | PPS4G1T019 | PPS4G1T018 | 227 | 9 4 9 | Insufficient Slope: R | Recommended for Inspection | | CHESTONOME 1911 1915 Presidenting < | PPS4H3P1777
STS2G4TP0877 | PPS4H3022
STS2G4T007 | PPS4H3020
STS2G4T006 | 376 | 18 | Insufficient Slope: R
Insufficient Slope: R | Recommended for Inspection | | 1,000,000,000,000,000,000,000,000,000,0 | ECS8D2P5512 | ECS8D2036 | ECS8D2035 | 311 | 15 | Insufficient Slope: R | Recommended for Inspection | | 1.000000000000000000000000000000000000 | ECS7E1P4953 | ECS7E1051 | ECS7E1050 | 362
126 | 12 | Insufficient Slope: R | Recommended for Inspection | | PRESENTATION PRESENTATION< | JLS5C2P0113
PPS3H4P1260 | JLS5C2048
PPS3H4036 | JLS5C2079
PPS3H4035 | 263 | 12 | Insufficient Slope: R
Insufficient Slope: R | Recommended for Inspection | | Division | PPS3H4P1380 | PPS3H4031 | PPS3H4030 | 279 | 12 | Insufficient Slope: R | Recommended for Inspection | | DTSSERVANDAR ENSPRENDANA 10.1988/20040 10.0 Insufficient 11.586/2011/10 FASSEACHOR 17.5 10.0 Insufficient 11.586/2011/10 FASSEACHOR 17.5 10.0 Insufficient 11.586/2011/10 FASSEACHOR 10.0 10.0 Insufficient 11.586/2011/10 FASSEACHOR 20.0 | PFS4R4F1644
DTS6E1P2796 | PFS4H4012
DTS6E1027 | DTS6E1026 | 362 | 10 | Insufficient Slope: R | Recommended for Inspection | | 1,1,5,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, | DTS6F3P6524
FAS6F4P4320 | DTS6F3024A
FAS6F4020 | DTS6F3024B | 86 | 10 | Insufficient Slope: R | Recommended for Inspection | | PF95GA000 PF95GA001 <t< td=""><td>JLS6D2P7585</td><td>JLS6D20110</td><td>JLS6D20109</td><td>151</td><td>10</td><td>Insufficient Slope: R</td><td>Recommended for Inspection</td></t<> | JLS6D2P7585 | JLS6D20110 | JLS6D20109 | 151 | 10 | Insufficient Slope: R | Recommended for Inspection | | PYSSORONOS SYSZA-MARION 89 10 Institution 87 1550-0075 SYSZA-MARION 186 10 Institution 87 1550-0075 SYSZA-MARION 456 10 Institution 87 1550-0076 SYSZA-MARION 456 10 Institution 87 1550-0076 SYSZA-MARION 456 10 Institution 87 1550-0076 ACSA-CATON 25 8 Institution | PPS4G3P1748
PPS5G4P7563 | PPS4G3016
PPS5G4008 | PPS4G3T015
PPS5G4075 | 175 | 10 | Insufficient Slope: R | Recommended for Inspection | | SISSEQUAND SISSEQUAND SISSEQUAND SISSEQUAND DISTRICTION < | PPS6G2P7692 | PPS6G2001B | PPS6G2001A | 06 | 10 | Insufficient Slope: R | Recommended for Inspection | | STSSQ-0044 S4 10 Insufficient DTSSE_0046 STSSQ-0044 S4 10 Insufficient DTSSE_0046 DTSSE_0046 S52 8 Insufficient DTSSE_0046 DTSSE_0046 STSS_0046 STSS_0046 STSS_0046 Insufficient DTSSE_0046 DTSSE_0047 DTSSE_0047 STSS_0046 STSS_0046 STSS_0046 Insufficient DTSSE_0047 DTSSE_0047 STSS_0047 <th< td=""><td>STS2H4P0820
STS3G3P1199</td><td>STS2H2001
STS3G3075</td><td>STS2H4058
STS3G3072</td><td>346</td><td>10</td><td>Insufficient Slope: R
Insufficient Slope: R</td><td>Recommended for Inspection</td></th<> | STS2H4P0820
STS3G3P1199 | STS2H2001
STS3G3075 | STS2H4058
STS3G3072 | 346 | 10 | Insufficient Slope: R
Insufficient Slope: R | Recommended for Inspection | | M. SERZONS DISSESSOR < | STS3G4P1280 | STS3G4005 | STS3G4004 | 46 | 10 | Insufficient Slope: R | Recommended for Inspection | | OFFSEENSKIE | ACS4C4P1955
DTS5E2P2424 | ACS4C4019
DTS5E2006 | ACS4C4018
DTS5E2005 | 25
392 | ∞ ∞ | Insufficient Slope: R
Insufficient Slope: R | Recommended for Inspection Recommended for Inspection | | OTTORESSENSION OTTORES | DTS5E2P2545 | DTS5E2055 | DTS5E2053 | 279 | ω ο | Insufficient Slope: R | Recommended for Inspection | | OFFSERON I OTTSSERON | DTS5E3P2845 | DTS5E3068 | DTS5E3067 | 168 | 0 8 | Insufficient Slope: R | Recommended for Inspection | | OFFISEE/GROUP 277 8 Intendiment OFFISEE/GROUP 1758 (1704) 257 8 Intendiment OFFISEE/GROUP 1758 (1704) <td>DTS5E3P2846
DTS6E1P3254</td> <td>DTS5E3001
DTS6E1064</td> <td>DTS6E1079
DTS6E1062</td> <td>380</td> <td>& &</td> <td>Insufficient Slope: R</td> <td>Recommended for Inspection</td> | DTS5E3P2846
DTS6E1P3254 | DTS5E3001
DTS6E1064 | DTS6E1079
DTS6E1062 | 380 | & & | Insufficient Slope: R | Recommended for Inspection | | D158F2017 D158 | DTS6E4P4168 | DTS6E4067 | DTS6E4060 | 379 | 8 0 | Insufficient Slope: R | Recommended for Inspection | | DISSENSAGE DISSENSAGE DISSENSAGE 1100 6 Interfluent EASSETUTZ | DTS6F3P4205
DTS6F3P4242 | DTS6F3011
DTS6F3018 | D1S6F3010
D7S6F3010 | 212 | ∞ | Insufficient Slope: R | Recommended for Inspection | | EASEFOLOS EASEFOLOS 225 8 Installent EASEFOLOS EASTOSOR EASTOSOR 225 8 Installent EASTOSOR EASTOSOR EASTOSOR 140 9 Installent EASTOSOR ECSTOSOR 141 9 Installent ECSTOSOR ECSTOSOR 141 9 Installent ECSTOSOR ECSTOSOR 141 9 Installent ECSTOSOR ECSTEGOR <td< td=""><td>DTS6F3P4370</td><td>DTS6F3045</td><td>DTS6F3044</td><td>100</td><td>0 80 0</td><td>Insufficient Slope: R</td><td>Recommended for Inspection</td></td<> | DTS6F3P4370 | DTS6F3045 | DTS6F3044 | 100 | 0 80 0 | Insufficient Slope: R | Recommended for Inspection | | EASEFTORD 255 8 Instrtiction EASEFTORD EASEFTORD 225 8 Instrtiction EASEFTORD EASEFTORD 285 8 Instrtiction EASEFTORD EASEFTORD 282 8 Instrtiction EASEFTORD EASEFTORD 282 8 Instrtiction EASTORD EASTORD 287 8
Instrtiction EASTORD EASTORD 87 8 Instrtiction EASTORD EASTORD 8 Instrtiction EASTORD EASTORD 449 8 Instrtiction ECSTDAIGN ECSTDAIGN 174 8 Instrtiction ECSTDAIGN ECSTDAIGN 149 8 Instrtiction ECSTDAIGN ECSTDAIGN 140 8 Instrtiction ECSTDAIGN ECSTDAIGN 140 8 Instrtiction ECSTCAGN ECSTCAGN 140 8 Instrtiction ECSTCAGN ECSTCAGN 140 8 | D15/F1P4681
EAS6F1P3359 | DIS/F100/
EAS6F1012 | DIS/F1006
EAS6F1001A | 388 | ωωω | Insufficient Slope: R | Recommended for Inspection | | EASSEGORD EASSEGORD 202 6 Insufficient EASSEGORDA EASSEGORD 242 6 Insufficient EASSEGORDA EASSEGORDA 267 6 Insufficient EASTATOZOR EASTATOZOR 267 6 Insufficient EASTATOZOR EASTATOZOR 8 Insufficient ECSTDORG ECSTDORG 8 Insufficient ECSTEGOR 170 6 Insufficient ECSTEGOR 172 18 Insufficient ECSTEGOR 172 </td <td>EAS6F1P3955</td> <td>EAS6F1112</td> <td>EAS6F1109</td> <td>255</td> <td>ω ω</td> <td>Insufficient Slope: R</td> <td>Recommended for Inspection</td> | EAS6F1P3955 | EAS6F1112 | EAS6F1109 | 255 | ω ω | Insufficient Slope: R | Recommended for Inspection | | EASIGNATION EASIGNATION EASIGNATION EASIGNATION In ANIMICANIA In ANIMICANIA In ANIMICANIA In ANIMICANIA In ANIMICANIA EASTACORON 267 8 In ANIMICANIA ECST702067 ECST702068 114 8 In ANIMICANIA | EAS6F4P4327 | EAS6F4028 | EAS6F4026 | 263 | 8 | Insufficient Slope: R | Recommended for Inspection | | EAST/HOUZE EAST/HOUZE EAST/HOUZE EAST/HOUZE EAST/HOUZE Insufficient ECST/D2067 ECST/D2067 174 8 Insufficient ECST/D2067 ECST/D2068 174 8 Insufficient ECST/D2069 ECST/D2069 149 8 Insufficient ECST/D2069 ECST/D2069 140 8 Insufficient ECST/D2069 ECST/D2069 170 8 Insufficient ECST/D2069 ECST/D2069 172 8 <t< td=""><td>EAS6G4P0493
EAS7G2P7034</td><td>EAS6G4060A
EAS7G2009</td><td>EAS6G4060
EAS7G2008</td><td>242</td><td>8 8</td><td>Insufficient Slope: R
Insufficient Slope: R</td><td>Recommended for Inspection</td></t<> | EAS6G4P0493
EAS7G2P7034 | EAS6G4060A
EAS7G2009 | EAS6G4060
EAS7G2008 | 242 | 8 8 | Insufficient Slope: R
Insufficient Slope: R | Recommended for Inspection | | ECSTOQUE ECSTOQUE 174 8 Instrument ECSTOQUE ECSTOQUE 174 8 Instrument ECSTOQUE ECSTOQUE 449 8 Instrument ECSTOQUE 449 8 Instrument ECSTOQUE 449 8 Instrument ECSTOQUE 449 8 Instrument ECSTOQUE 440 8 Instrument ECSTOQUE 440 8 Instrument ECSTOQUE 140 8 Instrument ECSTOQUE 170 8 Instrument ECSTOQUE 170 8 Instrument ECSTEGUE ECSTEGUE 18 Instrument ECSTEGUE ECSTEGUE 19 Instrument ECSTEGUE ECSTEGUE 19 Instrument ECSTEGUE ECSTEGUE 19 Instrument ECSTEGUE ECSTEGUE 10 8 Instrument ECSTEGUE ECSTEGUE 140 8 | EAS7H1P6214 | EAS7H1028 | EAS7H1027 | 199 | ω ο | Insufficient Slope: R | Recommended for Inspection | | ECSPDA019 ECSPDA019 ECSPDA019 ECSPDA019 Resificion ECSPDA019 ECSPDA029 449 8 Insufficient ECSPDA031 ECSPDA029 140 8 Insufficient ECSPDA031 ECSPDA032 140 8 Insufficient ECSPDA032 ECSPE003 170 8 Insufficient ECSPTE0132 ECSPE0132 70 8 Insufficient ECSPTE0132 ECSPE0132 8 Insufficient Insufficient ECSPTE0132 ECSPE0132 ECSPE0132 8 Insufficient ECSPTE0132 ECSPE0132 ECSPE0132 8 Insufficient ECSPTE0132 ECSPE0132 20 8 Insufficient ECSPE0133 ECSPE01403 124 18 Insufficient ECSPE01403 ECSPE01404 124 18 Insufficient ECSPE01404 ECSPE01405 ECSPE01406 18 Insufficient ECSPE01405 ECSPE01406 ECSPE01406 18 Insufficie | ECS7D2P4937 | ECS7D2067 | ECS7D2066 | 174 | 0 8 | Insufficient Slope: R | Recommended for Inspection | | ECSTD4031 ECSTD4039 140 8 Insufficient ECSTD4031 ECSTD4030 311 8 Insufficient ECSTE0104 ECSTE01040 311 8 Insufficient ECSTE0104 ECSTE0104 70 8 Insufficient ECSTE0104 ECSTE0105 70 8 Insufficient ECSTE0104 ECSTE0105 70 8 Insufficient ECSTE0105 ECSTE0105 70 8 Insufficient ECSTE0106 ECSTE0105 70 8 Insufficient ECSTE0107 ECSTE0106 10 8 Insufficient ECSTE0108 ECSTE0108 10 8 Insufficient ECSECONO ECSTE0108 ECSTE0108 10 8 Insufficient ECSECONO | ECS7D2P4940
ECS7D2P4982 | ECS7D2119 | ECS7D2118
ECS7D2058 | 68 | ∞ ∞ | Insufficient Slope: R | Recommended for Inspection | | ECSFE007 ECSFE007 TCSTD4031 TCSTD4031 CCSTD4031 LCSTD4030 170 B Insufficient ECSFE1007 ECSFE1006 170 8 Insufficient ECSFE1007 ECSFE1006 170 8 Insufficient ECSFE3126 ECSFE3032 156 8 Insufficient 8 Insufficient ECSFE3126 ECSFE3032 25 8 Insufficient 8 Insufficient ECSFE3126 ECSFE3036 384 8 Insufficient 8 Insufficient ECSFE3040 ECSFE3044 122 8 Insufficient 8 Insufficient ECSFE3040 ECSFE1034 122 8 Insufficient 8 Insufficient ECSFE1035 ECSFE1036 ECSFE1036 143 8 Insufficient ECSFE1036 ECSFE1037 143 8 Insufficient ECSFE1036 ECSFE1031 180 8 Insufficient ECSFE1036 ECSFE1031 143 8 <t< td=""><td>ECS7D4P5130</td><td>ECS7D4031</td><td>ECS7D4029</td><td>140</td><td>ω ο</td><td>Insufficient Slope: R</td><td>Recommended for Inspection</td></t<> | ECS7D4P5130 | ECS7D4031 | ECS7D4029 | 140 | ω ο | Insufficient Slope: R | Recommended for Inspection | | ECSPEGORY ECSPEGORY TOD 8 Insufficient ECSPEGOR ECSPEGORY TOD 8 Insufficient ECSPEGOR ECSPEGOR 166 8 Insufficient ECSPEGOR ECSPEGOR 8 Insufficient ECSPEGOR ECSPEGOR 8 Insufficient ECSPEGOR ECSPEGOR 386 8 Insufficient ECSPEGOR ECSPEGOR 122 8 Insufficient ECSPEGOR ECSPEGOR 185 8 Insufficient ECSPEGOR ECSPEGOR 185 8 Insufficient ECSPEGOR ECSPEGOR 143 8 Insufficient ECSPEGOR ECSPEGOR 143 8 Insufficient ECSPEGOR ECSPEGOR 143 8 Insufficient LASCOOR LASCOOR 140 8 Insufficient LASCOOR LASCOOR 140 8 Insufficient LASCOOR LASCOOR 140 8 In | ECS7E1P4719 | ECS/154031 | ECS7E1010 | 140 | 0 & | Undersized: Reco | mmended for Improvement | | ECSPEGAÇO ECSPEGAÇO 156 9 Insufficient ECSPEGAÇOS ECSPEGAÇOS 26 8 Insufficient ECSPEGAÇOS ECSPEGAÇOS 28 8 Insufficient ECSPEGAÇOS ECSBETOGOS 122 8 Insufficient ECSBETOGOS ECSBETOGOS 128 8 Insufficient ECSBETOGOS ECSBETOGOS 122 8 Insufficient ECSBETOGOS ECSBETOGOS 120 8 Insufficient ECSBETOGOS ECSBETOGOS 120 8 Insufficient ECSBETOGOS ECSBETOGOS 120 8 Insufficient ECSBETOGOS ECSBETOGOS 143 8 Insufficient ALSACOATA ALSACOATA 140 8 Insufficient ALSACOATA ALSACOATA 140 8 Insufficient ALSACOATA ALSACOATA 143 8 Insufficient ALSACOATA ALSACOATA 143 8 Insufficient ALSAC | ECS7E1P4778
ECS7E3P5178 | ECS7E1087
ECS7E3038 | ECS7E1086
ECS7E3037 | 170 | ω ω | Insufficient Slope: R
Insufficient Slope: R | Recommended for Inspection | | ECS/E4016 ECS/E4016 ECS/E4016 ECS/E4016 ECS/E4016 Insufficient ECS/E4016 ECS/E4016 122 8 Insufficient ECS/E4016 ECS/E4034 122 8 Insufficient ECS/E4036 ECS/E4034 143 8 Insufficient ECS/E4036 ECS/E4036 143 8 Insufficient ECS/E4037 ECS/E4036 143 8 Insufficient ECS/E4037 ECS/E4036 143 8 Insufficient ECS/E4037 ECS/E4036 143 8 Insufficient ECS/E4034 ECS/E4039 143 8 Insufficient ECS/E4037 ECS/E4039 143 8 Insufficient LISE/E3042 LISE/E3041 143 8 Insufficient </td <td>ECS7E3P549</td> <td>ECS7E3126</td> <td>ECS7E3125</td> <td>156</td> <td>8 (</td> <td>Insufficient Slope: R</td> <td>Recommended for Inspection</td> | ECS7E3P549 | ECS7E3126 | ECS7E3125 | 156 | 8 (| Insufficient Slope: R | Recommended for Inspection | | ECSBE1096 38B Insufficient ECSBE1096 ECSBE1094 122 6 Insufficient ECSBE1096 ECSBE1094 185 8 Insufficient ECSBE1096 ECSBE1091 80 8 Insufficient ECSBE1096 ECSBE1096 290 8 Insufficient ECSBE1097 ECSBE1097 143 8 Insufficient ECSBE2042 ECSBE2043 308 8 Insufficient ECSBE2042 ECSBE2043 308 8 Insufficient JUSPE2042 ECSBE2041 487 8 Insufficient JUSPE2042 JUSPE2041 473 8 Insufficient JUSPE2042 JUSPE2040 226 8 Insufficient JUSPE2043 JUSPE2040 413 8 Insufficient JUSPE2044 JUSPE2040 413 8 Insufficient JUSPE2043 JUSPE2044 133 8 Insufficient JUSPE2044 JUSPE2044 133 | ECS/E4P51/0
ECS7E4P5219 | ECS7E4005
ECS7E4015 | ECS/E4003
ECS7E4014 | 26
124 | ∞ ∞ | Insufficient Slope: R | Recommended for Inspection | | ECSBE1089 ECSBE1081 185 8 Insufficient ECSBE1084 ECSBE1084 210 8 Insufficient ECSBE1082 ECSBE1084 210 8 Insufficient ECSBE1084 ECSBE1079 308 8 Insufficient ECSBE2042 ECSBE2043 308 8 Insufficient ECSBE2042 ECSBE2041 187 8 Insufficient ECSBE2042 ECSBE2043 308 8 Insufficient ECSBE2042 LCSE2041 183 8 Insufficient LISAB2024 LLSE2023 1.85E2043 1.85E2044 | ECS8D2P5569
ECS8E1P5617 | ECS8D2070
ECS8E1095 | ECS8D2069
ECS8E1094 | 388 | ω ω | Insufficient Slope: R | Recommended for Inspection | | ECSBE1004 ECSBE1005 2.0 8 Insufficient ECSBE1004 ECSBE1006 2.0 8 Insufficient ECSBE1004 ECSBE1004 143 8 Insufficient ECSBE2004 ECSBE2004 143 8 Insufficient ECSBE2004 16 8 Insufficient LISAB012 J.ESE0201 163 8 Insufficient J.SAE3012 J.ESE0203 326 8 Insufficient J.ESE0204 J.ESE0203 326 8 Insufficient J.ESE0204 J.ESE0203 16 8 Insufficient J.ESE0204 J.ESE0203 173 8 Insufficient J.ESE0205 J.ESE0203 154 8 Insufficient J.ESE0206 J.ESE0203 < | ECS8E1P5664 | ECS8E1089 | ECS8E1088 | 185 | 8 | Insufficient Slope: R | Recommended for Inspection | | ECSBE1002 ECSBE1003 143 B Insufficient ECSBE20034 ECSBE2003 308 B Insufficient ECSBE20032 ECSBE2003 308 B Insufficient ECSBE20032 ECSBE2004 56 B Insufficient JUSAE3002 JUSAE3003 140 B Insufficient JUSAE3002 JUSAE3003 140 B Insufficient JUSAE3004 JUSAE3003 1250 B Insufficient JUSAE3006 JUSAE3006 11550 B Insufficient JUSAE3007 JUSAE3006 1250 B Insufficient JUSAE3007 JUSAE3007 130 B Insufficient JUSAE3007 | ECS8E1P5667
ECS8E1P5730 | ECS8E1096
ECS8E1087 | ECS8E1091
ECS8E1086 | 80 | ω ω | Insufficient Slope: R | Recommended for Inspection | | ECSBE3042 ECSBE3041 187 8 Insufficient JLSAE3012 ECSBE4069 56 8 Insufficient JLSAE3012 JLSAE3011 183 8 Insufficient JLSAE3012 JLSAE3021 136 8 Insufficient JLSAE3024 JLSAE3021 126 8 Insufficient JLSAE3024 JLSAE3020 209 8 Insufficient JLSAD2072 JLSAE30203 12 8 Insufficient JLSAD3072 JLSAB3078 12 8 Insufficient JLSAB3062 JLSAB3078 12 8 Insufficient JLSAB3079 JLSAB3074 103 8 Insufficient JLSAB3077 JLSAB3077 12 133 8 Insufficient JLSAB3078 JLSAB3087 16 8 Insufficient JLSAB3079 JLSAB3087 151 8 Insufficient JLSAB3079 JLSAB3087 154 8 Insufficient JLSAB | ECS8E1P5769
ECS8E2P5555 | ECS8E1082
ECS8E2034 | ECS8E1079
ECS8E2033 | 143 | ∞ ∞ | Insufficient Slope: R | Recommended for Inspection | | JLSAE3012 LCSAE3024 183 | ECS8E3P5899 | ECS8E3042 | ECS8E3041 | 187 | ω ω α | Insufficient Slope: R | Recommended
for Inspection | | JLSAE3032 JLSAE3031 140 8 Insufficient JLSAE3024 JLSAE3023 326 8 Insufficient JLSAE2043 JLSAE2040 209 8 Insufficient JLSAE2042 JLSAE2040 209 8 Insufficient JLSAE2042 JLSAE2040 209 8 Insufficient JLSAE2042 JLSAE2044 12 8 Insufficient JLSAE2047 JLSAE2044 133 8 Insufficient JLSAE2047 JLSAE2044 103 8 Insufficient JLSAE2047 JLSAE2044 103 8 Insufficient JLSAE2044 JLSAE2044 103 8 Insufficient JLSAE2044 JLSAE2044 131 8 Insufficient JLSAE2044 JLSAE2044 131 8 Insufficient JLSAE2044 JLSAE2044 130 8 Insufficient JLSAE2044 JLSAE2044 JLSAE2044 JLSAE2044 JLSAE2044 JLSAE2044 JLS | JLS4E3P2148 | JLS4E3012 | JLS4E3011 | 183 | ο ω | Insufficient Slope: R | Recommended for Inspection | | JLSGC2043 JLSGC2040 209 8 Insufficient JLSGD2072 JLSGD2070 173 8 Insufficient JLSGD2072 JLSGD2073 12 8 Insufficient JLSGD3062 JLSGD3078 280 8 Insufficient JLSGD3077 JLSGD3074 130 8 Insufficient JLSGD3077 JLSGD3074 130 8 Insufficient JLSGD3077 JLSGD3074 130 8 Insufficient JLSGD3078 JLSGD3077 JLSGD3077 JLSGD3077 JLSGD3077 JLSGD3077 B Insufficient JLSGD3079 JLSGD3077 JLSGD3077 JLSGD3077 131 8 Insufficient JLSGD3074 JLSGD3077 JLSGD1061 JLSGD1061 14 8 Insufficient JLSGD1064 JLSGD1067 JLSGD1067 JLSGD1068 8 Insufficient JLSGD1078 JLSGD1078 JLSGD1078 8 Insufficient JLSGD1079 JLSGD1078 289 | JLS4E3P2177
JLS4E3P2530 | JLS4E3032
JLS4E3024 | JLS4E3031
JLS4E3023 | 140
326 | ∞ ∞ | Insufficient Slope: R | Recommended for Inspection | | JLSSD2035 JLSSD2035 12 Partitioent JLSSD3062 JLSSD3065 280 8 Insufficient JLSSD3073 JLSSD3074 133 8 Insufficient JLSSD3077 JLSSD3074 103 8 Insufficient JLSSD3073 JLSSD3087 262 8 Insufficient JLSSD3074 JLSSD3087 262 8 Insufficient JLSSD3074 JLSSD3087 262 8 Insufficient JLSSD3083 JLSSD3087 262 8 Insufficient JLSSD1064 JLSSD1065 265 8 Insufficient JLSSD1065 JLSSD1064 266 8 Insufficient JLSSD1066 JLSSD1064 266 8 Insufficient JLSSD1078 JLSSD1064 266 8 Insufficient JLSSD1080 JLSSD1076 1LSSD1089 8 Insufficient JLSSD1081 JLSSD1084 289 8 Insufficient JLSSE3018 JLSSE3014 | JLS5C2P0413
JLS5D2P2232 | JLS5C2043
JLS5D2072 | JLS5C2040
JLS5D2070 | 209 | & & | Insufficient Slope: R
Insufficient Slope: R | Recommended for Inspection | | LUSED3079 JLSED3078 133 8 Insufficient JLSED3077 JLSED3078 133 8 Insufficient JLSED3077 JLSED3074 130 8 Insufficient JLSED3075 JLSED3074 103 8 Insufficient JLSED3073 JLSED3087 262 8 Insufficient JLSED3034 JLSED1051 151 8 Insufficient JLSED1054 JLSED1051 265 8 Insufficient JLSED1051 JLSED1069 266 8 Insufficient JLSED1076 JLSED1075 130 8 Insufficient JLSED1078 JLSED1088 289 8 Insufficient JLSED1089 JLSED1086 8 Insufficient JLSED307 JLSEE3018 JLSEE3018 Insufficient JLSEE3018 JLSEE3024 64 8 Insufficient JLSEE3019 JLSEE3024 138 8 Undersize JLSEE3025 JLSEE3024 8 | JLS5D2P7379 | JLS5D2035 | JLS5D2033 | 12 | ∞ ∞ | Insufficient Slope: R | Recommended for Inspection | | JUSSD3077 JUSSD3074 130 8 Insufficient Insufficient Insufficient Insufficient Insufficient Insufficient Insufficient Insufficient JUSSD3083 JUSSD3074 103 8 Insufficient In | JLS5D3P2969 | JLS5D3079 | JLS5D3078 | 133 | ωωα | Insufficient Slope: R | Recommended for Inspection | | JLS5D3033 JLS5D3033 JLS5D3033 JLS5D3033 JLS5D3034 JLS5D3033 151 8 Insufficient S JLS6D1054 JLS6D1051 JLS6D1051 131 8 Insufficient S JLS6D1056 JLS6D1056 255 8 Insufficient S JLS6D1078 JLS6D1064 266 8 Insufficient S JLS6D1078 JLS6D1089 289 8 Insufficient S JLS6D1089 JLS6D1089 8 Insufficient S JLS6D2057 JLS6D2056 98 8 Insufficient S JLS6E3019 JLS6E3017 01 64 8 Undersized JLS6E3020 JLS6E3024 138 8 Undersized JLS6E3025 JLS6E3026 25 8 Insufficient S STUB6043 JLS6E3024 138 8 <td>JLS5D3P2979
JLS5D3P3023</td> <td>JLS5D3077
JLS5D3075</td> <td>JLS5D3074
JLS5D3074</td> <td>130</td> <td>8 8</td> <td>Insufficient Slope: R</td> <td>Recommended for Inspection</td> | JLS5D3P2979
JLS5D3P3023 | JLS5D3077
JLS5D3075 | JLS5D3074
JLS5D3074 | 130 | 8 8 | Insufficient Slope: R | Recommended for Inspection | | JLS6D1054 JLS6D1051 131 8 Insufficient S JLS6D106 JLS6D1015 154 8 Insufficient S JLS6D1061 JLS6D1050 255 8 Insufficient S JLS6D1078 JLS6D1075 130 8 Insufficient S JLS6D1078 JLS6D1075 130 8 Insufficient S JLS6D1079 JLS6D1075 178 8 Insufficient S JLS6D1079 JLS6D1076 98 8 Insufficient S JLS6D2057 JLS6D2056 98 8 Insufficient S JLS6E3019 JLS6E3017 101 8 Indersized JLS6E3020 JLS6E3019 64 8 Undersized JLS6E3021 JLS6E3024 138 8 Undersized JLS6E3025 JLS6E3026 367 8 Insufficient S STUB6043 JLS6E3002 25 8 Insufficient S PPS4F4063 PPS4F4083 118 8 Insufficient S PPS5F1041 </td <td>JLS5D3P3055
JLS5D3P3935</td> <td>JLS5D3093
JLS5D3034</td> <td>JLS5D3087
JLS5D3033</td> <td>262</td> <td>80 80</td> <td>Insufficient Slope: R</td> <td>Recommended for Inspection</td> | JLS5D3P3055
JLS5D3P3935 | JLS5D3093
JLS5D3034 | JLS5D3087
JLS5D3033 | 262 | 80 80 | Insufficient Slope: R | Recommended for Inspection | | JLS6D1016 JLS6D1016 255 8 Insufficient insuf | JLS6D1P2987 | JLS6D1054 | JLS6D1051 | 131 | ω ο | Insufficient Slope: R | Recommended for Inspection | | JLS6D1065 JLS6D1064 266 8 Insufficient insufficient JLS6D1078 JLS6D1075 130 8 Insufficient JLS6D1089 JLS6D1088 289 8 Insufficient JLS6D1029 JLS6D1026 98 8 Insufficient JLS6D2057 JLS6E3017 101 8 Insufficient JLS6E3018 JLS6E3019 64 8 Undersize JLS6E3020 JLS6E3018 29 8 Undersize JLS6E3025 JLS6E3024 138 8 Undersize JLS6E3026 JLS6E3026 367 8 Insufficient STUB6043 JLS6E3005 25 8 Insufficient PPS4F4034 PPS4F4033 118 8 Insufficient PPS5F1041 PPS5F1038 193 8 Insufficient | JLS6D1P3059 | JLS6D1051 | JLS6D1050 | 255 | ο | Insufficient Slope: R | Recommended for Inspection | | JLS6D1089 JLS6D1088 289 8 Insufficient JLS6D1129 JLS6D1125A 178 8 Insufficient JLS6D2057 JLS6D2056 98 8 Insufficient JLS6E3018 JLS6E3017 101 8 Undersize JLS6E3020 JLS6E3019 64 8 Undersize JLS6E3019 JLS6E3018 29 8 Undersize JLS6E3025 JLS6E3024 138 8 Undersize JLS6E3027 JLS6E3005 367 8 Insufficient STUB6043 JLS6E3002 25 8 Insufficient PPS4F4034 PPS4F4033 118 8 Insufficient PPS4F4063 PPS4F4033 18 Insufficient PPS5F1041 PPS5F1038 193 8 Insufficient | JLS6D1P3386
JLS6D1P3680 | JLS6D1078 | JLS6D1064
JLS6D1075 | 130 | ∞ ∞ | Insufficient Slope: R | Recommended for Inspection | | JLS6D2057 JLS6D2056 98 JLS6E3018 JLS6E3017 101 JLS6E3020 JLS6E3019 64 JLS6E3019 JLS6E3019 64 JLS6E3019 JLS6E3018 29 JLS6E3025 JLS6E3024 138 JLS6E3007 JLS6E3005 367 STUB6043 JLS6E3002 25 PPS4F4034 PPS4F4033 147 PPS4F4063 PPS4F4033 118 PPS5F1041 PPS5F1038 193 | JLS6D1P3790
JLS6D1P4159 | JLS6D1089
JLS6D1129 | JLS6D1088
JLS6D1125A | 289 | & & | Insufficient Slope: R | Recommended for Inspection | | JLS6E3018 JLS6E3017 101 JLS6E3020 JLS6E3019 64 JLS6E3019 JLS6E3018 29 JLS6E3025 JLS6E3024 138 JLS6E3007 JLS6E3005 367 STUB6043 JLS6E3002 25 PPS4F4034 PPS4F4033 147 PPS5F1041 PPS5F1038 193 | JLS6D2P3442 | JLS6D2057 | JLS6D2056 | 86 | ω (| Insufficient Slope: R | Recommended for Inspection | | JLS6E3019 JLS6E3018 29 JLS6E3025 JLS6E3024 138 JLS6E3007 JLS6E3005 367 STUB6043 JLS6E3002 25 PPS4F4034 PPS4F4033 147 PPS5F1041 PPS5F1038 118 | JLS6E3P3869
JLS6E3P3883 | JLS6E3018
JLS6E3020 | JLS6E3017
JLS6E3019 | 101 | ∞ ∞ | Undersized: Reco | mmended for Improvement | | JLS6E3007 JLS6E3005 367 STUB6043 JLS6E3002 25 PPS4F4034 PPS4F4033 147 PPS4F4063 PPS4F4033 118 PPS5F1041 PPS5F1038 193 | JLS6E3P3884
JLS6E3P4079 | JLS6E3019
JLS6E3025 | JLS6E3018
JLS6E3024 | 29 | ω ω | Undersized: Reco | mmended for Improvement | | PPS4F4034 PPS4F4033 147 PPS4F4063 PPS4F4033 118 PPS5F1041 PPS5F1038 193 | JLS6E3P4255
JLS6E3P6179 | JLS6E3007
STUB6043 | JLS6E3005
JLS6E3002 | 367 | ω ω | Insufficient Slope: R | Recommended for Inspection | | | PPS4F4P2127 | PPS4F4034 | PPS4F4033 | 147 | ∞ ∞ | Insufficient Slope: R | Recommended for Inspection | | | PPS5F1P2348 | PPS5F1041 | PPS5F1038 | 193 | , ω | Insufficient Slope: R | Recommended for Inspection | | | | Table 5-2. Gravity Ma
Under Existing | Table 5-2. Gravity Mains Not Meeting Performance Criteria
Under Existing Rebounded Flow Conditions | rmance Criteria
nditions | | |-----------------|---------------------|---|---|-----------------------------|--| | Gravity Main ID | Upstream Manhole ID | Downstream Manhole ID | Length, linear feet (LF) | Diameter, in | Description | | PPS5F1P2395 | PPS5F1012 | PPS5F1011 | 242 | 8 | Insufficient Slope: Recommended for Inspection | | PPS5F1P2410 | PPS5F1011 | PPS5F1010 | 23 | 8 | Insufficient Slope: Recommended for Inspection | | PPS5F1P2601 | PPS5F1022 | PPS5F1021 | 189 | 8 | Insufficient Slope: Recommended for Inspection | | PPS5F1P2611 | PPS5F1045 | PPS5F1044 | 62 | 8 | | | PPS5G1P2355 | PPS5G1042 | PPS5G1041 | 413 | 8 | Insufficient Slope: Recommended for Inspection | | PPS5G1P2705 | PPS5G1006 | PPS5G1005 | 75 | 8 | Insufficient Slope: Recommended for Inspection | | PPS5G1P2958 | PPS5G1024 | PPS5G1021 | 356 | 8 | | | PPS5G2P2640 | PPS5G2009 | PPS5G2008 | 399 | 8 | | | PPS5G3P2239 | PPS5G3007 | PPS5G3006 | 268 | 8 | Insufficient Slope: Recommended for Inspection | | PPS5G3P2372 | PPS5G3015 | PPS5G3002 | 110 | 8 | Insufficient Slope: Recommended for Inspection | | PPS5G3P2896 | PPS5G3042 | PPS5G3041 | 182 | 8 | Insufficient Slope: Recommended for Inspection | | PPS5G3P3260 | PPS5G3073 | PPS5G3072 | 134 | 80 | Insufficient Slope: Recommended for Inspection | | PPS5G4P2819 | PPS5G4050 | PPS5G4049 | 399 | 8 | Insufficient Slope: Recommended for Inspection | | PPS5G4P3173 | PPS5G4034 | PPS5G4033 | 302 | 8 | Insufficient Slope: Recommended for Inspection | | PPS5H1P2298 | PPS5H1027 | PPS5H1026 | 111 | 8 | Insufficient Slope: Recommended for Inspection | | PPS5H1P2812 | PPS5H1075 | PPS5H1047 | 127 | 8 | Insufficient Slope: Recommended for Inspection | | PPS5H1P3347 | PPS5H1072 | PPS5H1071 | 96 | 8 | Insufficient Slope: Recommended for Inspection | | PPS6G2P3608 | PPS6G2017 | PPS6G2013 | 206 |
8 | Undersized: Recommended for Improvement | | RHS6D3P4314 | RHS6D3035 | RHS6D3034 | 176 | 8 | Insufficient Slope: Recommended for Inspection | | RHS6D3P4464 | RHS6D3006 | RHS6D3005 | 251 | 8 | Insufficient Slope: Recommended for Inspection | | RHS6D3P6241 | RHS6D3085 | RHS6D3083 | 142 | 8 | Insufficient Slope: Recommended for Inspection | | RHS6D3P6251 | RHS6D3068 | RHS6D3067 | 48 | 8 | Insufficient Slope: Recommended for Inspection | | RHS7D3P4836 | RHS7D3034 | RHS7D3033 | 115 | 8 | Insufficient Slope: Recommended for Inspection | | RHS7D3P4867 | RHS7D3036 | RHS7D3004 | 253 | 8 | Insufficient Slope: Recommended for Inspection | | RHS8C2P0045 | RHS8C2001 | RHS8D1151 | 176 | 80 | Insufficient Slope: Recommended for Inspection | | RHS8D1P5565 | RHS8D1122 | RHS8D1121 | 312 | 8 | Insufficient Slope: Recommended for Inspection | | RHS8D3P5733 | RHS8D3043 | RHS8D3042 | 104 | 8 | Insufficient Slope: Recommended for Inspection | | RHS8D3P5824 | RHS8D3036 | RHS8D3035 | 86 | 8 | Undersized: Recommended for Improvement | | RHS8D3P5832 | RHS8D3034 | RHS8D3033 | 62 | 8 | Undersized: Recommended for Improvement | | RHS8D3P5837 | RHS8D3030 | RHS8D3029 | 29 | 8 | Undersized: Recommended for Improvement | | RHS8D3P5830 | RHS8D3035 | RHS8D3034 | 61 | 8 | Undersized: Recommended for Improvement | | STS2G4P0936 | STS2G4056 | STS2G4055 | 91 | 8 | Insufficient Slope: Recommended for Inspection | | STS2G4P0979 | STS2G4047 | STS2G4T001 | 198 | 8 | Insufficient Slope: Recommended for Inspection | | STS2H4P0919 | STS2H4014 | STS2H4013 | 140 | 8 | Insufficient Slope: Recommended for Inspection | | STS3F4P1449 | STS3F4092 | STS3F4091 | 101 | 8 | Insufficient Slope: Recommended for Inspection | | STS3G2P1263 | STS3G2053 | STS3G2052 | 257 | 8 | Insufficient Slope: Recommended for Inspection | | STS3G3P1392 | STS3G3027 | STS3G3026 | 349 | 8 | Insufficient Slope: Recommended for Inspection | | STS3G4P1271 | STS3G4057 | STS3G4004 | 36 | 8 | Insufficient Slope: Recommended for Inspection | | STS3G4P1491 | STS3G4026 | STS3G4011 | 110 | 8 | Insufficient Slope: Recommended for Inspection | | JLS6E3P3883 | JLS6E3020 | JLS6E3019 | 64 | 8 | Undersized: Recommended for Improvement | | DTS5E3P3053 | DTS5E3028 | DTS5E3027 | 33 | 9 | Insufficient Slope: Recommended for Inspection | | JLS6D2P6720 | JLS6D2089A | JLS6D2088A | 104 | (a) | Undersized: Recommended for Improvement | | JLS6E3P4231 | JLS6E3032 | JLS6E3031 | 95 | 9 | Undersized: Recommended for Improvement | | JLS6E3P4232 | JLS6E3031 | JLS6E3031A | 209 | 9 | Undersized: Recommended for Improvement | | Table 5-3. Existing Rebounded | Lift Station Capacity Results | |-------------------------------|--------------------------------------| |-------------------------------|--------------------------------------| | Pump
umber | Pump
Capacity,
gpm | Firm
Capacity,
gpm | Force Main | Existing
Rebounded | | Peak Force
Main | |---------------|---|--|---|---|--|--| | 4 | | 95 | Diameter, in | Design
Flow, gpm | Available Firm Capacity, gpm | Velocity ^(a) ,
fps | | 1 | 1,180 | 4.400 | 40 | 620 | 550 | 2.25 | | 2 | 1,180 | 1,180 | 12 | 630 | 550 | 3.35 | | 1 | 1,145 | 1 1 1 1 5 | 10/9 | 690 | AGE | 4.68/7.3 | | 2 | 1,145 | 1,145 | 10/6 | 660 | 465 | 4.00/7.3 | | 1 | 400 | 400 | 0 | 50 | 250 | 2.55 | | 2 | 400 | 400 | 8 | 50 | 350 | 2.55 | | 1 | 320 | 220 | 0 | 70 | 250 | 2.04 | | 2 | 320 | 320 | ð | 70 | ∠50 | 2.04 | | | 1 2 1 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 | 1 1,145
2 1,145
1 400
2 400
1 320
2 320 | 1 1,145
2 1,145
1 400
2 400
1 320
2 320
2 320 | 2 1,180 1 1,145 2 1,145 1 400 2 400 1 320 320 8 | 2 1,180 1 1,145 2 1,145 1 400 2 400 1 320 2 320 320 8 70 | 2 1,180 1 1,145 2 1,145 1 400 2 400 320 400 320 320 320 8 70 250 | Peak force main velocity is calculated at the firm capacity of the lift station. #### **5.4 BUILDOUT CAPACITY EVALUATION** This section presents the results of the capacity evaluation of the City's collection system under buildout flow conditions. Collection system capacity for gravity mains, lift stations, and force mains was assessed with respect to the system's performance under the buildout PWWF design flow condition described in Chapter 3, using the design and performance criteria described in Chapter 4. #### 5.4.1 Buildout Gravity Main Hydraulic Evaluation Because the City's design and performance criteria for the gravity collection system include both flow criteria in the gravity mains, as well as surcharge depth criteria in the manholes, incidences of performance criteria exceedance have been identified for both gravity mains and manholes. The gravity mains and manholes that fail to meet performance criteria are displayed on Figure 5-3. The gravity mains that fail to meet performance criteria under buildout design flows can be found in Table 5-4. It should be noted that the hydraulic analysis identifies every incidence of the design and performance criteria being exceeded. In the large majority of these incidences, the performance criteria are exceeded in an isolated gravity main that has a low or even flat slope. In most cases, these low and flat slope gravity mains are small diameter gravity mains that were brought into the model for the first time as part of this Sewer Master Plan, and which have poorly verified invert elevation data. It is anticipated that these identified gravity mains do not represent true hydraulic bottlenecks in the collection system. Therefore, these gravity mains have not been included in this Sewer Master Plan as recommended improvement projects. However, it is recommended that in the future the City perform field verification of these isolated mains so their true capacity can be determined and the assumption of no hydraulic bottleneck confirmed. # Table 5-4. Gravity Mains Not Meeting Performance Criteria Under Buildout Conditions | Description Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection | Insurricient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insurincent Stope: Necommended for Inspection | Undersized: Recommended for Inspection/Monitoring ^(a)
Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Undersized: Recommended for Improvement | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Institute of Stopes, recommended to inspection institute of the stopes in the stope of | Insufficient Stope: Recommended for Inspection Undersized: Recommended for Improvement | Insufficient Slope: Recommended for Inspection
Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Undersized: Recommended for Improvement Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Undersized: Recommended for Improvement | Undersized: Recommended for Improvement Undersized: Recommended for Improvement | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection
Undersized: Recommended for Improvement | Undersized: Recommended for Improvement Incutificions Stones Decommended for Instruction | Insufficient Slope: Recommended for Inspection Insufficient Slope: Becommended for Inspection Insufficient Slope: Becommended for Insufficient Slope: | Insufficient Slope: Recommended for Inspection Insufficient Slope: Becommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection Insufficient Slope: Decommended for Insufficient Slope: | Institutional Slope: Recommended for Inspection Institutional Slope: Recommended for Inspection Institutional Slope: Recommended for Inspection | Institutional Slope: Recommended for Inspection Institutional Slope: Recommended for Inspection Institutional Slope: Recommended for Inspection | insulineeri siope. Recommended for inspection Insulineeri Slope: Recommended for Inspection
Insulficient Slope: Becommended for Insulineering | Insurince to the second and the second insurince to th | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection Insufficient Slope: Boommended for Insufficient Slope: Boommended for Insufficient Slope: Boommended for Insufficient Slope: | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection Insufficient Slope: Boommanded for Insufficient Slope: | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Undersized: Recommended for Improvement Insufficient Slope: Recommended for Inspection | Indepsized: Recommended for Improvement | Undersized: Recommended for Improvement Undersized: Recommended for Improvement Undersized: Recommended for Improvement | Undersized: Recommended for Improvement
Undersized: Recommended for Improvement | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Institucient Stope: Recommended or Inspection Institucion Stope: Recommended for Inspection Institucion Stope: Recommended for Inspection | Institutional Slope: Recommended for Inspection Institutional Slope: Recommended for Inspection Institutional Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection
Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection
Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection
Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection Insufficient Close: Decommended for Inspection | Insufficient Slope: Recommended for Inspection Insufficient Slope: Recommended for Inspection Industrial Slopes are accommended for Inspection | Undersized: Recommended for Improvement Undersized: Recommended for Improvement Undersized: Recommended for Improvement | |--|--|---|---|---|--|---|--|---|---|---|--|--|--|---|---|--|--|---|---|---|---|---|--|---|---|---|---|---|---
--|--|---|---|--|---|---|---|---|--|---|---|---|---|---|---|---|---|--|---|---|--|--|---|---|--|--|---| | Yes Under Existing
Conditions | Yes | No | Yes | Yes | No
Yes | Yes | Yes | Yes | Yes | Yes | S ON | No | Yes | Yes | Yes | No
Yes | Yes | 0 N | Yes | Yes | Yes | Yes | oN S | Xes Xes | Yes S ON ON | 0 | No No | Yes Yes
Yes | Yes | Yes | Yes | Yes
Yes | | Diameter, in | 33 83 | 33 | 30 | 27 | 24 | 24 | 18 | 18 | 18 | 18 4 | 5 5 5 | 12 | 12 | 12 | 12 | 10 | 10 | 10 10 | 10 0 | 10 | 01 01 | 10 | 0 00 0 | 0 00 0 | ο ∞ ο | 0 00 0 | α α α | ω ω α | ο & α | 0 00 | ∞ ∞ ο | ω ω | ∞ ∞ ο | 0 00 0 | α α α | ω ω α | ο ω ο | ∞ ∞ ∞ | 0 80 80 | 8 8 | 8 8 | ω ω | ω ω ι | ω ω α | ω ω α | ωω | ω ω | ω ω | 8 8 | & & | 8 8 | 8 8 | 8 8 | 8 8 | & & 0 | ∞ ∞ α | α α α | | Length, LF | 86 | 117 | 8 293 | 154 | 52
47 | 330 | 87
439 | 180 | 227 | 376 | 245 | 362 | 126 | 150 | 299 | 59 | 35 | 268 | 151 | 72 | 346 | 46 | 285 | 392 | 467 | 27 | 379 | 257 | 126 | 255 | 265 | 242 | 199 | 68 | 140 | 311
140
170 | 149 | 79 | 315 | 70 | 26
124 | 388 | 185 | 210 | 308 | 187 | 183 | 326 | 173 | 280 | 130 | 262 | 131 | 255
266 | 130 | 98 | 95
101
64 | | Downstream Manhole ID | JLS5C2037 | JLS5D41004
DTS5F3T011 | PPS5F2T001A | PPS4G3T003 | D1S6E11018
DTS6E1T026 | PPS4G3T016
DTS5E3T006 | DTS5E3T033
ECS7D1T001 | ECS7D3T004
ECS7D3T006 | PPS4G1T018
PPS4H3020 | STS2G4T006 | RHS8D3027 | U1S0EZUS0
EAS6F1116 | ECS7E1050
JLS5C2079 | PPS3H4035
PPS3H4030 | PPS4H4011
DTS6E1026 | DTS6E2062
DTS6F3024B | EAS6F4019
JLS6D2066 | JLS5D2074
JLS5D4T011 | JLS6D20109
PPS4G3T015 | PPS5G4075
PPS6G2001A | STS2H4058 | STS3G4004
ACS4C4004 | AC\$4C4005 | DTS62005 | DTS5E2065 | DTS6E1079 | D1S6E1062
DTS6E4060 | D1S6F3010
DTS6F3010 | DTS7F1006 | EAS6F1109 | EAS6F2031
EAS6F4026 | EAS6G4060
EAS7G2008 | EAS7H1027
ECS7D2061 | ECS/D2000
ECS7D2118 | ECS/DZ058
ECS7D4029 | ECS7D4090
ECS7E1010
ECS7E1086 | ECS7E1000
ECS7E1022 | ECS7E1042
ECS7E2001
ECS7E2005 | ECS7E2009
ECS7E2008 | ECS7E3037
ECS7E3125 | ECS7E4003 | ECS8D2069
ECS8E1094 | ECS8E1088
ECS8E1091 | ECS8E108/
ECS8E1086 | ECS8E10/9
ECS8E2033 | ECS8E3041
ECS8E4069 | JLS4E3011
JLS4E3031 | JLS4E3023
JLS5C2040 | JLS5D2070
JLS5D2033 | JLS5D3055
JLS5D3078 | JLS5D3074
JLS5D3074 | JLS5D3033 | JLS6D1051
JLS6D1015 | JLS6D1050
JLS6D1064 | JLS6D1075
JLS6D1088 | JLS6D7125A
JLS6D2056 | JLS6E3017
JLS6E3019 | | Upstream Manhole ID | JLS5C2F001 | JLS5D41005
PPS5F4001 | PPS5F2T002 | PPS4G3T004 | DTS6E1T019
DTS6E1T027 | PPS4G3T017
DTS5E3T007 | DTS5E3T034
ECS7D1T002 | ECS7D3T005
ECS7D3T007 | PPS4G1T019
PPS4H3022 | STS2G4T007 | RHS8D3028 | D1S6EZ068A
EAS6F1117 | ECS7E1051
JLS5C2048 | PPS3H4036
PPS3H4031 | PPS4H4012
DTS6E1027 | DTS6E2063
DTS6F3024A | EAS6F4020
JLS6D2070 | JLS6D2066
JLS5D2074 | JLS6D20110
PPS4G3016 | PPS5G4008
PPS6G2001B | STS2H2001 | STS3G4005
ACS4C4005 | ACS4C4006 | DTS5E2006 | DTS5E2066 | DTS5E3000 | D1S6E1064
DTS6E4067 | D1S6F3011 | DTS7F1007 | EASOF1012 | EAS6F2033
EAS6F4028 | EAS6G4060A
EAS7G2009 | EAS7H1028
ECS7D2062 | ECS7D2119 | ECS/DZ059
ECS7D4031 | ECS7D4091
ECS7E1011
ECS7E1087 | ECS7E1007
ECS7E1042 | ECS7E1043
ECS7E2003
ECS7E2004 | ECS7E2012
ECS7E2009 | ECS7E3038
ECS7E3126 | ECS7E4005
ECS7E4015 | ECS8D2070
ECS8E1095 | ECS8E1096 | ECS8E1088
ECS8E1087 | ECS8E1082
ECS8E2034 | ECS8E4072 | JLS4E3012
JLS4E3032 | JLS4E3024
JLS5C2043 | JLS5D2072
JLS5D2035 | JLS5D3062
JLS5D3079 | JLS5D3077
JLS5D3075 | JLS5D3093
JLS5D3034 | JLS6D1054
JLS6D1016 | JLS6D1051
JLS6D1065 | JLS6D1078
JLS6D1089 | JLS6D2057 | JLS6E3017
JLS6E3018
JLS6E3020 | | Gravity Main ID | JLS5C2P0398 | JLS5D41 P2859
DTS5F3TP7021 | PPS5F2TP6057 | PPS4G3TP2310 | D1S6E11P6530
DTS6E1TP7077 | PPS4G3TP1715
DTS5E3TP2799 | DTS6E2TP5942
ECS7D1TP4617 | ECS7D3TP5113 | PPS4G1TP1604
PPS4H3P1777 | STS2G4TP0877 | RHS8D3P5817 | L1S6EZF3965
EAS6F1P4053 | ECS7E1P4953
JLS5C2P0113 | PPS3H4P1260
PPS3H4P1380 | PPS4H4P1644
DTS6E1P2796 | DTS6E2P4043
DTS6F3P6524 | EAS6F4P4320
JLS6D2P3064 | JLS6D2P7605
JLS5D2P5994 | JLS6D2P7585
PPS4G3P1748 | PPS5G4P7563
PPS6G2P7692 | STS2H4P0820
STS3G3P1199 | STS3G4P1280
ACS4C4P1841 | ACS4C4P1847 | DTS6E2P2424 | DTS5E2P2615 | DTS5E3P2845 | DTS6E4P4168 | DT S6F3P4205
DT S6F3P4242 | DTS7F1P4681 | EAS6F1P3955 | EAS6F2P3961
EAS6F4P4327 | EAS6G4P0493
EAS7G2P7034 | ECS7D2P4881 | ECS/D2F493/
ECS7D2P4940 | ECS/DZP4982
ECS7D4P5130 | ECS7D4P5368
ECS7E1P4719
ECS7F1P4778 | ECS/E174770
ECS/E174950 | ECS7E1P4970
ECS7E2P4902
ECS7E2P4905 | ECS7E2P4999
ECS7E2P7371 | ECS7E3P5178
ECS7E3P549 | ECS7E4P5170
ECS7E4P5219 | ECS8D2P5569
ECS8E1P5617 | ECS8E1P5664
ECS8E1P5667 | ECS8E1P5/03
ECS8E1P5/30 | ECS8E1P5/69
ECS8E2P5555 | ECS8E3P3899
ECS8E4P7100 | JLS4E3P2148
JLS4E3P2177 | JLS4E3P2530
JLS5C2P0413 | JLS5D2P2232
JLS5D2P7379 |
JLS5D3P2839
JLS5D3P2969 | JLS5D3P2979
JLS5D3P3023 | JLS5D3P3935 | JLS6D1P2987
JLS6D1P3027 | JLS6D1P3386 | JLS6D1P3680
JLS6D1P3790 | JLS6D7P4159
JLS6D2P3442 | JLS6D2P3834
JLS6E3P3869
JLS6E3P3883 | City of Livermore Sewer Master Plan | ins Not Meet | Under Buildout Conditions | |-------------------------------------|---------------------------| | -4. Gravity Mains Not Meeting Perfo | r Buildout C | | Upstream Manhole ID
JLS6E3019 | Downstream Manhole ID
JLS6E3018 | Length, LF
29 | Diameter, in 8 | Yes | | |----------------------------------|------------------------------------|------------------|----------------|---|--| | JLS6E3021 | JLS6E3020 | 188 | 8 | No | Undersized: Recommended for Improvement | | JLS6E3022 | JLS6E3021 | 61 | 8 | o _N | | | JLS6E3023 | JLS6E3022 | 116 | 8 | No | Undersized: Recommended for Improvement | | JLS6E3024 | JLS6E3023 | 130 | 8 | No | Undersized: Recommended for Improvement | | JLS6E3025 | JLS6E3024 | 138 | 8 | Yes | Undersized: Recommended for Improvement | | JLS6E3007 | JLS6E3005 | 367 | ∞ . | Yes | Insufficient Slope: Recommended for Inspection | | S1 UB6043 | JLS6E3002 | 52 77 | ∞ α | Yes | Insufficient Slope: Recommended for Inspection | | PPS4F4034 | | 118 | 0 & | \
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\ | Insufficient Slope: Recommended for Inspection | | PPS5F1041 | | 193 | 0 & | Yes | Insufficient Slope: Recommended for Inspection | | PPS5F1012 | PPS5F1011 | 242 | 8 | Yes | | | PPS5F1011 | PPS5F1010 | 23 | 8 | Yes | | | PPS5F1022 | | 189 | 8 | Yes | Insufficient Slope: Recommended for Inspection | | PPS5F1045 | PPS5F1044 | 62 | 80 | Yes | Insufficient Slope: Recommended for Inspection | | PPS5G1042 | PPS5G1041 | 413 | ω « | Yes | Slope: | | PPS5G1006 | PPS5G1005 | 75 | ∞ (| Yes | Insufficient Slope: Recommended for Inspection | | PPS5G1024 | | 356 | ∞ . | Yes | Insufficient Slope: Recommended for Inspection | | PPS5G2009 | PPS5G2008 | 366 | ∞ . | Yes | | | PPS5G3007 | PPS5G3006 | 268 | 80 | Yes | Insufficient Slope: Recommended for Inspection | | PPS5G3015 | PPS5G3002 | 110 | ∞ (| Yes | Slope: | | PPS5G3042 | PPS5G3041 | 182 | ω . | Yes | Insufficient Slope: Recommended for Inspection | | PPS5G3073 | PPS5G3072 | 134 | ∞ (| Yes | Insufficient Slope: Recommended for Inspection | | PPS5G4050 | PPS5G4049 | 399 | ∞ (| Yes | Insufficient Slope: Recommended for Inspection | | PPS5G4034 | PPS5G4033 | 302 | ∞ α | Yes | Insufficient Slope: Recommended for Inspection | | PPS5H102/ | PFS5H1028 | 127 | οα | se X | Insufficient Slope: Recommended for Inspection | | PPS5H1072 | PPS5H1071 | 96 | ο ∞ | Xes | Slope: | | PPS6G2012 | PPS6G2011 | 448 | 8 | N _O | Undersized: Recommended for Improvement | | PPS6G2017 | PPS6G2013 | 206 | 8 | Yes | Undersized: Recommended for Improvement | | RHS6D3035 | RHS6D3034 | 176 | 8 | Yes | Insufficient Slope: Recommended for Inspection | | RHS6D3006 | RHS6D3005 | 251 | 8 | Yes | Insufficient Slope: Recommended for Inspection | | RHS6D3085 | RHS6D3083 | 142 | 8 | Yes | Insufficient Slope: Recommended for Inspection | | RHS6D3068 | RHS6D3067 | 48 | 8 | Yes | Slope: | | RHS7D3034 | RHS7D3033 | 115 | 8 | Yes | Insufficient Slope: Recommended for Inspection | | RHS7D3036 | RHS7D3004 | 253 | 8 | Yes | Insufficient Slope: Recommended for Inspection | | RHS8C2001 | RHS8D1151 | 176 | 8 | Yes | Insufficient Slope: Recommended for Inspection | | RHS8D1122 | RHS8D1121 | 312 | 8 | Yes | Insufficient Slope: Recommended for Inspection | | RHS8D3043 | RHS8D3042 | 104 | ∞ - | Yes | | | RHS8D3036 | RHS8D3035 | 86 | ∞ (| Yes | Undersized: Recommended for Improvement | | KH38U3U33 | KH38U3U34 | 10 | 000 | Yes | Undersized: Recollimended for Improvement | | PHS8D3034 | PHS8D3030 | 20 | οα | 50/ | Undersized: Neconmended for Improvement | | STS2C40E6 | STS2C406E | 6 6 | o a | > | Including Slove: Becommended for Increasing | | STS2G4030 | STS264T001 | 198 | ο α | S | Insufficient Slope: Recommended for Inspection | | STS2HA01A | STS2H4043 | 740 | οα | 200 | Signal of the second | | STS3F4092 | STS3F4091 | 101 | ο α | Yes | Insufficient Slobe: Recommended for Inspection | | STS3G2053 | | 257 | 8 | Yes | Insufficient Slope: Recommended for Inspection | | STS3G3027 | | 349 | 8 | Yes | Insufficient Slope: Recommended for Inspection | | STS3G4057 | STS3G4004 | 36 | 80 | Yes | Insufficient Slope: Recommended for Inspection | | STS3G4026 | STS3G4011 | 110 | 8 | Yes | Insufficient Slope: Recommended for Inspection | | DTS5E3028 | | 33 | 9 | Yes | Insufficient Slope: Recommended for Inspection | | JLS6E3032 | JLS6E3031 | 95 | 9 | Yes | Undersized: Recommended for Improvement | | CCETACA | V 1000 | | | | | #### 5.4.2 Buildout Lift Station Hydraulic Evaluation The City's performance standards require that all collection system lift stations have sufficient capacity to convey design flows with the largest pump out of service, defined as the "firm capacity" of the lift station. Each lift station's firm capacity was compared to the buildout design flow conveyed to the lift station. If the designed flow was greater than the lift station's firm capacity, then the lift station was considered to have insufficient capacity. The hydraulic model indicates that all the collection system lift stations, with the exception of the Airport Lift Station, currently have sufficient firm capacity to convey buildout design flows, as shown in Table 5-5. The Airport Lift Station has a deficiency in firm capacity of 335 gpm under buildout conditions. As shown, both the El Charro and College Lift Stations are nearing their firm capacity under buildout flow conditions. The Airport Lift Station was not identified as deficient under any conditions as part of the 2004 Master Plan. Increased flows are identified as tributary to this lift station because of increased projected development areas. The increased area increases the projected ADWF, but also increases the projected RDII and PWWF. As further discussed in Chapter 7, flow monitoring should be conducted in the basin tributary to the Airport Lift Station to confirm the RDII and PWWF values, which have significant impact on the buildout design flows, and significant impact on the need for an improvement at this lift station. Table 5-5. Buildout Lift Station Capacity Results | | | | | • | • | | | |----------------------|----------------|-----------------------|--------------------------|-------------------------------|---------------------------------|---------------------------------|-------------------| | | | Lift Stati | ion Data | | | Evaluation Result | ts | | Lift Station
Name | Pump
Number | Pump
Capacity, gpm | Firm
Capacity,
gpm | Force Main
Diameter,
in | Buildout
Design
Flow, gpm | Available Firm
Capacity, gpm | Peal
N
Veld | | College Lift | 1 | 1,180 | 1 100 | 12 | 990 | 190 | 3 | | Station | 2 | 1,180 | 1,180 | 12 | 990 | 190 | ٥ | fps 3.35? 1 1,145 Airport Lift 6.04/9.44 1,145 10/8 1,480 (335)Station 2 1,145 1 400 Rickenbacker 400 80 320 2.55? Lift Station 2 400 1 320 El Charro Lift 320 8 260 60 2.04? Station 2 320 The City's performance standards further require that the holding volume in a wet well that has an overflow relief mechanism or standby power shall be equivalent to two hours accumulation of the design flow. Wet wells that do not have overflow relief or standby power shall have a holding volume equivalent to four hours accumulation of the design flow The City's lift stations do not meet the holding volume performance standards under buildout conditions. ak Force Main Iocity^(a). ⁽a) Peak force main velocity is calculated at the firm capacity of the lift station. For the Airport Lift Station, peak force main velocity was calculated using the required buildout firm capacity of 1,480 gpm. #### 5.4.3 Buildout Force Main Hydraulic Evaluation Peak force main velocities under buildout conditions are provided in Table 5-6. With an improvement to the Airport Lift Station to expand the capacity to 1,480 gpm such that the Airport Lift Station will meet the buildout capacity requirements, the peak velocity in the 8-inch diameter portion of the Airport Lift Station force main will significantly exceed the criteria of 7 fps. As there are no other lift station improvements required, there are no further changes between existing and buildout force main velocities. The hydraulic model, particularly the elements concerning lift station and force main capacity analysis, is a planning-level tool and is not intended for operational analysis. An operational analysis of the lift station and force main performance should be performed to confirm that the lift stations and force mains are operating as intended and planned. #### Symbology WRP Water Reclamation Plant - LS Lift Station - Gravity Main in 2004 Model - Gravity Main in 2016 Model - --- Force Main - Sewer Service Boundary # Figure 5-1 Updated Model Network City of Livermore Sewer Master Plan #### Symbology WRP Water Reclamation Plant Lift Station #### Manhole Capacity Results No Capacity issue (not shown) - Surcharged Depth > 2 ft - Unfilled Depth ≤ 3 ft - Surcharged Depth > 2 ft and Unfilled Depth ≤ 3 ft #### **Gravity Main Capacity Results** - --- No Deficiency - --- Insufficient Slope - Undersize - - Force Main - Sewer Service Boundary Figure 5-2 Hydraulic Evaluation Results Existing PWWF > City of Livermore Sewer Master Plan #### Symbology WRP Water Reclamation Plant #### Lift Station Capacity Results - No Capacity Deficiency - Capacity Deficiency #### **Manhole Capacity Results** No Capacity issue (not shown) - Surcharged Depth > 2 ft - Unfilled Depth ≤ 3 ft - Surcharged Depth > 2 ft and Unfilled Depth ≤ 3 ft #### **Gravity Main Capacity Results** - --- No Deficiency - --- Insufficient Slope - Undersize #### Force Main Capacity Results - - No
Deficiency - - Recommended Upsize - Sewer Service Boundary Figure 5-3 Hydraulic Evaluation Results Buildout PWWF > City of Livermore Sewer Master Plan # **Operational Analysis** Whereas previous chapters have focused on the hydraulic capacity of the collection system and the need for future capacity to meet development needs, Chapter 6 summarizes the evaluation of the condition and day-to-day operation of the City's collection system. Maintaining the condition of the collection system and providing effective operation of the collection system are equally important to providing adequate hydraulic capacity in meeting the needs of the City and its customers. #### **6.1 GRAVITY MAIN OPERATIONAL ANALYSIS** This Sewer Master Plan does not include a business risk assessment of the collection system. The City has previously performed a business risk assessment of the gravity mains as part of its asset management efforts, and may update this assessment using the results of this Sewer Master Plan. Despite the fact that a full business risk assessment was not performed, the development of the capacity analysis for this Sewer Master Plan identified some operational changes that may improve the day-to-day operation of the collection system. The primary operational improvement that was identified for the collection system, and in particular the gravity mains, was better collection of flow data throughout the collection system. The daily operation of the collection system, as well as the accuracy of the capacity evaluation and planning performed for the collection system, will be improved by greater understanding of the flows, both dry weather and wet weather, throughout the collection system. Systematic flow monitoring will provide that understanding. A recommended flow monitoring plan for the collection system was developed as described below. #### 6.1.1 Gravity Main Age Isolation RDII enters collection systems through defects in gravity mains, manholes, and private laterals, and such defects tend to increase in number and severity with age of infrastructure. Therefore, although infrastructure age is not a perfect indicator of RDII risk, it is a strong indicator of risk, particularly if comprehensive condition assessment information is not available. Effective wet weather flow monitoring plans isolate regions within the collection system by age to quantify RDII trends. In the City's collection system, the oldest infrastructure is found in a central core corresponding to the downtown and Old Town area, with newer infrastructure found proceeding outward and away from this core. Many of the larger diameter trunk gravity mains are older as well. The installation decade of gravity mains throughout the collection system are presented on Figure 6-1. #### 6.1.2 Potable Water Source Isolation As described in Chapter 2, and discussed in greater detail in Chapter 3, there are four potable water providers within the City's sewer service area. In a collection system such as the City's, with low amounts of groundwater infiltration and base infiltration, ADWF can be calculated as a fraction (Return-to-Sewer ratio) of the potable water delivered to the service area. Because the four distinct potable water providers in the City's sewer service areas operate with different rate structures, conservation incentives, and recycled water programs, the amount of potable water that ends up in the collection system as ADWF varies for each provider. Therefore, to better quantify the return-to-sewer ratio that is specific to each potable water source, so that existing and future ADWF projections can be refined over time, it is recommended that the City's flow monitoring program isolate the collection system by potable water source where possible. The potable water source delivery areas are displayed on Figure 6-2. #### 6.1.3 Land Use Isolation In addition to potable water source isolation, land use isolation allows for effective refinement of Return-to-Sewer ratio values. In addition, non-residential land use flow generation can vary greatly from application to application, and has greater variation from "typical" values. For these reasons, it is recommended that the City's flow monitoring program isolate specific land uses when possible. #### **6.1.4 Recommended Flow Monitoring Program** In 2016, City staff developed a flow monitoring plan that consisted of purchasing nine flow monitors and placing them around the collection system. City staff identified preliminary locations for these nine monitors. To date, the City has purchased two flow monitors and is testing them at various locations around the collection system. The nine flow monitoring locations identified by City staff were reviewed and found to be suitable for long-term flow monitoring of the collection system. These locations maximize the amount of data that will be captured across the collection system for both dry weather and wet weather flow quantification. These nine locations identified by City staff can be seen on Figure 6-2. While the nine locations identified by City staff maximize the amount of data that can be captured by this number of flow monitors, they do not fully isolate areas of the collection system by gravity main age and potable water source as recommended above. Therefore, further flow monitoring locations are recommended to support and complement the permanent flow monitoring being developed by the City: - A flow monitor should be located immediately downstream of the permanent meter that captures flow from LLNL and SNL as this flow enters the City's collection system. Although such a meter would be redundant to the existing permanent meter for quantifying ADWF, the temporary flow monitor's 15-minute resolution will be far superior to the permanent meter's 24-hour resolution in quantifying RDII flows. Because of the large areas contained within the LLNL and SNL campuses, quantifying RDII rates in these areas is critical for capacity management. The temporary flow monitor will also serve to calibrate the data captured by the permanent meter. - A flow monitor should be located immediately downstream of the connection from the Ruby Hill development to the City's collection system. Such a meter would isolate the development both for determining RDII values for this significant area, and for determining precise return-to-sewer ratios for ADWF from the area served potable water by the City of Pleasanton. - A flow monitor should be installed upstream of the Airport Lift Station. As described in Chapter 5, the hydraulic analysis predicts that the Airport Lift Station has insufficient capacity under future conditions. Further quantification of both the dry and wet weather flow into this lift station will be critical for determining the size and timing of the capacity improvement project required. This quantification is of more importance given the potential for redevelopment per the Isabel Neighborhood Plan in the basin tributary to this lift station (see additional discussion in Chapter 7 and Appendix B). - A flow monitor should be installed upstream of the College Lift Station. As described in Chapter 5, the hydraulic analysis predicts that the College Lift Station will be utilizing nearly its full hydraulic capacity under future conditions. Further quantification of both the dry and wet weather flow into this lift station will allow for more confidence in managing the capacity at this facility. This quantification is of more importance given the potential for redevelopment per the Isabel Neighborhood Plan in the basin tributary to this lift station (see additional discussion in Chapter 7 and Appendix B). - It is recommended that a flow monitor be installed in the gravity main trunk in East Avenue, just upstream of Mines Road in the eastern portion of the collection system. This flow monitor would serve, in conjunction with the permanent flow monitors already planned by the City, to isolate the portion of the City in the east served potable water by Cal Water from the central portion of the City served by City municipal water sources. - It is recommended that a flow monitor be installed in the gravity main trunk in Sonoma Avenue, just upstream of where this main connects to the larger main in El Caminito. This flow monitor would serve to isolate an area of particularly old gravity mains in the center of the collection system to quantify RDII rates in these old gravity mains. With the addition of the six flow monitoring locations recommended above to the nine locations previously identified by the City, the City will have a comprehensive flow monitoring plan that will satisfy the City's requirements for managing the capacity of the collection system. In addition to the flow monitors recommended above, it is recommended that the City install depth-only monitors at two locations that are predicted to surcharge in the hydraulic analysis, as described in Chapter 5. The first of these locations is at Joyce Street, and the second location is in the vicinity of S Street. The depth-only monitors will provide a cost-effective early-warning of potential surcharges in areas that have been identified as having potential capacity problems. The City has already purchased level meters that can be used in these locations. The cost of the flow monitoring program described above is included as a line item in the recommended Capital Improvement Program (CIP) for the collection system presented in Chapter 7. #### **6.2 LIFT STATION OPERATIONAL ANALYSIS** The ability of the four lift stations in the collection system to convey design flows, both under existing and future conditions, was evaluated as described in Chapter 5. However, lift stations can fail even when having sufficient nominal hydraulic capacity. Lift stations have the following principal failure modes: hydraulic capacity failure, maintenance failure, and structural/mechanical failure. These modes are discussed briefly as follows:
- Capacity Failure. As part of this Sewer Master Plan, a hydraulic capacity evaluation was conducted on the collection system for current and buildout conditions under peak wet weather flow conditions, as documented in Chapter 5. - Maintenance Failure. Maintenance problems related to pump failure, electrical failure, or grease and odor issues can cause a decrease in the level of service provided by a lift station. - **Structural/Mechanical Failure**. Older lift stations are more likely to fail than newer ones due to the age of materials and wear from repeated use. Older lift stations are more likely to have cracks, breaks, corrosion, and equipment that is beyond its intended useful life. Maintenance and mechanical evaluations at the lift stations were not performed as part of this Sewer Master Plan. It is recommended that the City perform these evaluations as part of implementing this Sewer Master Plan. At a minimum, such evaluations should include the following: - Condition assessment that includes physical inspection of condition and performance at each lift station. - Performance evaluation of the pumps at each lift station to determine how closely their true capacity is to their stated capacity. The performance evaluation should include the development of system curves to help refine pump selection. - Operational evaluation to determine the optimal control points such that pump capacity, wet well volume, and existing/future flows are best accounted for. The cost of the maintenance and mechanical evaluations described above is included as a line item in the recommended CIP for the collection system presented in Chapter 7. # Gravity Main Installation Decade City of Livermore Sewer Master Plan - Selected Flow Meter Locations - Additional Recommended Flow Meter Locations - Recommended Depth Meter Locations #### **Gravity Main - Diameter** - 21-inch 33-inch - 36-inch 60-inch - Sewer Service Boundary SFPUC refers to San Francisco Public Utilities Commission. # Figure 6-2 # **Recommended Flow Monitoring Plan** City of Livermore Sewer Master Plan #### **CHAPTER 7** ## **Prioritized Capital Improvement Program** Chapter 7 provides an overview of the recommended improvements for the gravity main, lift stations, and force mains that have been identified in Chapters 5 and 6. These improvements have been prioritized based on the development timeline and risk assessment performed, and includes conceptual costs for the recommended improvement projects. It is important to note that the focus of this Sewer Master Plan is to recommend capacity related improvement projects for the City's sewer system. It is not the intent for this Sewer Master Plan to be the sole source of all recommended sewer system projects for inclusion in the City's Capital Improvement Plan (CIP). Other sources include the Water Resource Division's asset management program (which focuses on the renewal or replacement of sewer system assets based on and age and condition), regulation and code compliance, operations and maintenance staff input, and coordination with other roadway improvements. The City utilizes and coordinates all sources in the development of the City's overall CIP for the sewer system This chapter also briefly describes an evaluation of the potential need for additional collection system improvements beyond those identified in Chapters 5 and 6 of this Sewer Master Plan to serve the City's proposed Isabel Neighborhood Plan, which is proposed to develop in conjunction with the proposed future extension of BART to Isabel Avenue. As described in Section 7.1.3 below, it was determined that a small number of collection system improvements beyond those already identified would be required to serve the proposed Isabel Neighborhood Plan. A complete description of the collection system evaluation to serve the proposed Isabel Neighborhood Plan is provided in Appendix B. #### 7.1 RECOMMENDED SEWER COLLECTION SYSTEM CAPITAL IMPROVEMENT PROGRAM The recommended collection system capital improvement projects are described below, listed in Table 7-1 and shown in Figure 7-1. It should be noted that the recommended CIP only identifies improvements at a Master Planning level and does not constitute a design of such improvements. Subsequent detailed design will be required to determine the exact sizes and locations of these proposed improvements and to refine the opinion of probable construction cost. #### 7.1.1 Existing Sewer Collection System Capital Improvement Program Chapter 5 provided a summary of the evaluation of the City's existing collection system and its ability to meet the recommended design and performance criteria described in Chapter 4. Based on the existing collection system evaluation, improvements were recommended to eliminate existing system deficiencies. These improvements do not include improvements for the gravity mains with low slopes identified in Chapter 5. It is anticipated that these identified gravity mains do not represent true hydraulic bottlenecks in the collection system, and therefore have not been included in this Sewer Master Plan as recommended projects. However, it is recommended that in the future the City perform field verification of these isolated mains so their true capacity can be determined and the assumption of no hydraulic bottleneck confirmed. If a true hydraulic bottleneck is found, the City can develop an improvement project at that time. | GIAIO | V Improvement Type | Table 7-1. Summary of Re | nmary of Recommended Capital Improvement Projects and Estimated Cost ^(a) Estimated Capital Computer Cost ^(a) (includes mark | ects and Estim
Estimated | ost
-up | Exis (b) Cost | Existing User Fut | Future User Cost
Allocation | |---|---|--------------------------|--|-----------------------------|------------------------------|-----------------|---------------------------|--------------------------------| | Gravity Main Improve | Gravity Main Improvements Gravity Main Improvements EX-CIP-P01 Gravity Main Upsize | 2 | Existing Design Flow: Upsize 304 feet of 6-inch to 8-inch gravity main along South Street between First Street and Second Street. Upsize 104 feet of 6-inch gravity main to 10-inch gravity main in Lambaren Avenue at South Street. Upsize 330 feet of 8-inch gravity main to 10-inch gravity main in East Stanley Boulevard between First Street and power station in Railroad Avenue, and gravity main located under railroad at the other side of commercial parking lot. (City records indicate that a portion of this upsize has occurred after performance of the hydraulic evaluation. The status of this project should be confirmed before design is commenced.) Buildout Design Flow: Upsize a further 590 feet of 8-inch gravity main to 10-inch gravity main from power station beside Railroad Avenue running into the commercial parking lot up to railroad and between Railroad and Ventura Avenue. | 279,000 | ea
44.6 | | 290,000 \$ | 254,000 | | EX-CIP-P02 | Gravity Main Upsize | ON | Upsize 289 feet of 8-inch gravity main to 15-inch gravity main in \$ Old Oak Road between Breeze Way and Lakeside Circle. | 87,000 | \$ 170 | 170,000 \$ | 108,800 \$ | 61,200 | | EX-CIP-P03 | Gravity Main Upsize | Yes, but not constructed | Upsize 140 feet of 8-inch gravity main to 10-inch gravity main in Anza Way between Aberdeen Avenue and Holmes Street and upsize 496 feet of 8-inch gravity main to 10-inch gravity main in Holmes Street between Anza Way and Mocho Street to maintain continuity in diameter | 140,000 | \$ 273 | 273,000 \$ | 273,000 \$ | | | EX-CIP-P04 | Gravity Main Upsize | Yes, but not constructed | Existing Design Flow: Upsize 207 feet of 8-inch gravity main to 10-inch gravity main in Lilian Street between Shirley Way and south of Lucille Street. Buildout Design Flow: Upsize an additional
605 feet of 8-inch gravity main to 10-inch gravity main in south of Lucille Street. | 179,000 | 349 | 349,000 \$ | \$ 000'06 | 259,000 | | EX-CIP-P05 | Flow Monitoring Program | ON N | Conduct flow monitoring program that consists of 15 full flow meter sites and two level-only meter sites. Of the 15 full flow meter sites, two have already been installed. Seven remaining sites identified by the City will be installed, in addition to six additional sites as identified in Chapter 6. ^(c) | -
Subtotal | & & & | \$ 000,000 | 246,000 \$ | 54,000 | | Collection System P | Planning Studies Lift Station Assessment | oN S | Perform operational evaluation to identify the condition and performance characteristics of the City's four lift stations. The study will include a report that prioritizes an improvement plan based upon the inspection results. | | \$ | \$ 000,000 | 200,000 | 0 | | EX-CIP-P07 | Field Verification of
Hydraulic Model | NO
NO | | 1 | | | 61,500 \$ | 13,500 | | Buildout Improvemer Gravity Main Improv | overnents (2040 Improvements) | | Existing System Improvement Projects (Near-Tern | r-Term Projects) Total | 49 1,911 | ,911,000 \$ | 1,269,300 \$ | 641,700 | | BO-CIP-P01 | Gravity Main Upsize | Yes, but not constructed | Upsize 638 feet of 10-inch gravity main to 15-inch gravity main in Rincon Avenue between Elm Street and Pine Street. | 191,000 | \$ 372 | 372,000 \$ | ٠ | 372,000 | | BO-CIP-P02 | Gravity Main Upsize | Yes, but not constructed | Upsize 265 feet of 8-inch gravity main to 10-inch gravity main in Aberdeen Avenue between Columbus Avenue and Hudson Way, and upsize 1,288 feet of 8-inch gravity main to 10-inch gravity main in Aberdeen Avenue between Columbus Avenue and Anza Way to maintain continuity in diameter. | 341,000 | 9 | \$ 865,000 | . | 000'599 | | BO-CIP-P03 | Gravity Main Upsize | Yes, but not constructed | Upsize 1,215 feet of 8-inch gravity main to 10-inch gravity main in Gamay Road between Quail Court and Cabernet Way, and in Cabernet Way between Gamay Road and Chianti Court. Upsize 1,420 feet of 8-inch gravity main to 10-inch gravity main in Cabernet Way between Chianti Court and Arroyo Road and in Arroyo Road between Cabernet Way and Robertson Park Road to maintain continuity in diameter. | 000'625 | \$ 1,129,000 | 9 | ' | 1,129,000 | | BO-CIP-P04 | Gravity Main Upsize | No | Upsize 458 feet of 8-inch gravity main to 10-inch gravity main in Clubhouse Drive and upsize 359 feet of 8-inch gravity main to 10- \$ inch gravity main in Clubhouse Drive to maintain continuity in diameter. | 180,000 | \$ 351, | \$ 000 | φ. | 351,000 | | BO-CIP-P05 | Gravity Main Upsize | o
Z | Upsize 439 feet of 18-inch gravity main to 21-inch gravity main in EI Caminito north of Sonoma Avenue and upsize 801 feet of 18-inch gravity main to 21-inch gravity main in EI Caminito north of Sonoma Avenue to Karen Way to maintain continuity in diameter. | 521,000 | 4,016, | \$
000° | · · | 1,016,000 | | BO-CIP-P06 | Gravity Main Upsize | 2 | Upsize 59 feet of 10-inch gravity main to 12-inch gravity main in East Avenue at 7th Street. Upsize 116 feet of 12-inch gravity main to 15-inch gravity main in East Avenue east of Dolores Street and upsize 1,072 feet of 12-inch gravity main in East Avenue between Dolores Street and 7th Street to maintain continuity in diameter. | 373,000 | ↔ | | ٠ | 727,000 | | Lift Station Improven | ments | | | Subtotal | \$ 4,260,000 | \$ 000 | \$ - | 4,260,000 | | BO-CIP-P07 | Capacity Improvement | ON. | Increase firm capacity of the Airport Lift Station from 1,145 gpm to 1,480 gpm. In addition to capacity increase, rehabilitate lift station electrical, mechanical and structural elements. Upsize 990 feet of 8-inch force main to 10-inch force main in West Jack London Boulevard to handle increased flows. | 966,400 | | \$ 000 | 1,458,000 \$ | 426,000 | | | | | Subtotal Buildout Improvement Projects Total Total Capital Improvement Plan | Subtotal ant Projects Total | \$ 1,884,000
\$ 6,144,000 | \$ 9 000 | 1,458,000 \$ 1,458,000 \$ | 426,000
4,686,000 | | (a) Costs shown are ba | (a) Costs shown are based on the March 2017 SF ENR CCI of 11609. | CCI of 11609. | The state of s | | הלים
הלים | 9 | \$ 000,121,2 | 001,120,0 | The recommended existing collection system improvements are as follows: - Upsize 304 feet of 6-inch to 8-inch gravity main along South Street between First Street and Second Street. Upsize 104 feet of 6-inch gravity main to 10-inch gravity main in Lambaren Avenue at South Street (City records indicate that a portion of this upsize has occurred after performance of the hydraulic evaluation. The status of this project should be confirmed before design is commenced). Upsize 919 feet of 8-inch gravity main to 10-inch gravity main in East Stanley Boulevard between First Street and Railroad Avenue, and running into the commercial parking lot between Railroad Avenue and Ventura Avenue. (Project No. EX-CIP-P01). - Upsize 289 feet of 8-inch gravity main to 15-inch gravity main in Old Oak Road between Breeze Way and Lakeside Circle. (Project No. EX-CIP-P02). - Upsize 140 feet of 8-inch gravity main to 10-inch gravity main in Anza Way between Aberdeen Avenue and Holmes Street. (Project No. EX-CIP-P03). - Upsize 812 feet of 8-inch gravity main to 10-inch gravity main in Lilian Street between Shirley Way and south of Lucille Street. (Project No. EX-CIP-P04). - Implement flow monitoring program as described in Chapter 6. The flow monitoring program will consist of fifteen (15) sites with full flow meters, and two (2) sites with level-only meters. (Project No. EX-CIP-P05). The recommended existing system improvements should be implemented in the near-term. The locations of the recommended existing collection system improvement projects are shown on Figure 7-1. #### 7.1.2 Future Sewer Collection System Capital Improvement Program Chapter 5 also provided a summary of the evaluation of the City's future collection system and its ability to meet the recommended design and performance design criteria described in Chapter 4. Based on the future collection system evaluation, improvements were recommended to eliminate future system deficiencies and to meet projected flows at buildout. These improvements do not include improvements for the gravity mains with low slopes identified in Chapter 5. It is anticipated that these identified gravity mains do not represent true hydraulic bottlenecks in the collection system, and therefore have not been included in this Sewer Master Plan as recommended projects. However, it is recommended that in the future the City perform field verification of these isolated mains so their true capacity can be determined and the assumption of no hydraulic bottleneck confirmed. The recommended buildout collection system improvements are as follows: - Upsize 638 feet of 10-inch gravity main to 15-inch gravity main in Rincon Avenue between Elm Street and Pine Street. (Project No. BO-CIP-P01). - Upsize 265 feet of 8-inch gravity main to 10-inch gravity main in Aberdeen Avenue between Columbus Avenue and Hudson Way, and upsize 1,288 feet of 8-inch gravity main to 10-inch gravity main in Aberdeen Avenue between Columbus Avenue and Anza Way to maintain continuity in diameter. (Project No. BO-CIP-P02). - Upsize 1,215 feet of 8-inch gravity main to 10-inch gravity main in Gamay Road between Quail Court and Cabernet Way, and in Cabernet Way between Gamay Road and Chianti Court. Upsize 1,420 feet of 8-inch gravity main to 10-inch gravity main in Cabernet Way between Chianti Court and Arroyo Road and in Arroyo Road between Cabernet Way and Robertson Park Road to maintain continuity in diameter. (Project No. BO-CIP-P03). - Upsize 458 feet of 8-inch gravity main to 10-inch gravity main in Clubhouse Drive and upsize 359 feet of 8-inch gravity main to 10-inch gravity main in Clubhouse Drive to maintain continuity in diameter. (Project No. BO-CIP-P04). - Upsize 439 feet of 18-inch gravity main to 21-inch gravity main in El Caminito north of Sonoma Avenue and upsize 801 feet of 18-inch gravity main to 21-inch gravity main in El Caminito north of Sonoma Avenue to Karen Way to maintain continuity in diameter. (Project No. BO-CIP-P05). - Upsize 59 feet of 10-inch gravity main to 12-inch gravity main in East Avenue at 7th Street. Upsize 116 feet of 12-inch gravity main to 15-inch gravity main in East Avenue east of Dolores Street and upsize 1,072 feet of 12-inch gravity main to 15-inch gravity main in East Avenue between Dolores Street and 7th Street to maintain continuity in diameter. (Project No. BO-CIP-P06). - Increase firm capacity of the Airport Lift Station from 1,145 gpm to 1,480 gpm. In addition to capacity increase, rehabilitate lift station electrical, mechanical, and structural elements. Upsize 990 feet of 8-inch force main to 10-inch force main in West Jack London Boulevard to handle increased flows. (Project No. BO-CIP-P07) The recommended buildout system improvements should be implemented when flows approach buildout levels. The locations of the recommended collection system improvement projects are shown on Figure 7-2. #### 7.1.3 Additional Improvements to Serve the Isabel Neighborhood Plan The Isabel Neighborhood Plan (INP) is a proposed development area located in the northwest portion of the City. The INP planning area covers approximately 1,138 acres, and is entirely within the City's urban growth boundary. A portion of the INP planning area lies within the City's water service area (in Pressure Zone 1) and a portion lies within the CalWater Livermore District service area. The INP will guide future development of the area surrounding the proposed BART station in the I-580 median, just east of Isabel Avenue and is contingent upon the extension of BART to this location. The INP planning area includes both existing developed areas and proposed new development areas. Proposed land uses for the INP are different from those
currently included in the City's General Plan. The INP includes new residential areas both north and south of I-580, as well as non-residential, employment generating, uses including ground floor retail, office and commercial. Three new neighborhood parks and open space buffers along the creeks are also proposed to provide recreational opportunities and access to natural areas. Sewer flows have been projected for the proposed INP land uses to determine if the additional sewer flows associated with the INP trigger required improvements to the City's collection system. The projected ADWF for the INP planning area assuming the INP land uses is 714,000 gpd, which is 195,000 gpd (or about 37 percent) higher than the ADWF for the INP planning area assuming current General Plan land uses. Existing collection system infrastructure is primarily in place within the INP planning area to serve the existing developed areas. Based on the sewer flow projections for the INP land uses, the following additional collection system improvements would be required to serve future planned development under the proposed INP: - Additional gravity main improvements (beyond those required for buildout conditions); and - Additional capacity required at the City's Airport Lift Station (deficiency in firm capacity increases from 335 gpm under buildout conditions to 365 gpm with the INP included). The required INP CIP projects can be seen on Figure 7-3. It should be noted that extension of services to individual parcels is not included in this analysis and the resulting projects. Extension of services would be provided by developers as necessary. Additional information on the INP proposed land uses, projected sewer flows, and collection system evaluation is provided in Appendix B. #### 7.1.4 Additional Collection System Studies As described in Chapter 6, the development of the Sewer Master Plan identified further information that would be valuable for the operation of the collection system. Such data will be used to augment and refine the capacity evaluation that has been performed as part of the Sewer Master Plan, as well as used to evaluate the collection system in a manner that goes beyond capacity evaluation. The following studies are recommended to collect this data: - Lift Station Assessment. This study will consist of an operational evaluation to identify the condition and performance characteristics of the City's four lift stations. The study will include a report that prioritizes an improvement plan based upon the inspection. The assessment will include an evaluation of the methods that the City may use (alarms, overflow to storage, and other such methods) to mitigate the fact that the lift stations do not have sufficient holding capacity per City criteria in the event of a lift station outage. (Project No. EX-CIP-P06). - Field Verification of Hydraulic Model. This study will consist field verification of hydraulic model. Field verification will be performed for infrastructure identified in the Gap Analysis as described in Chapter 5, as well as for gravity mains segments that were identified as low slope during the hydraulic modeling. Field verification will include physical inspection and possibly surveying of horizontal and vertical alignment as necessary. Field verification may lead to the development of further hydraulic improvement projects if hydraulic bottlenecks are confirmed. (Project No. EX-CIP-P07). #### 7.2 CAPITAL IMPROVEMENT PROGRAM COSTS AND IMPLEMENTATION The Capital Improvement Program costs and implementation assumptions are described below. #### 7.2.1 Cost Assumptions The opinion of probable project cost for recommended collection system improvements is presented in March 2017 dollars based on an Engineering News Record (ENR) Construction Cost Index (CCI) of 11609 (San Francisco Average). Base construction costs were developed based on bids on other water facilities design projects and from standard cost estimating guides. The total project cost includes a mark-up equal to 95 percent of the base construction costs, which includes an estimating contingency of 30 percent, and markups of 20 percent for design period services and 30 percent for construction period services. Refer to Table 3 of Appendix C for an example application of project cost markups. For this Sewer Master Plan, it is assumed that new collection system facilities will be developed in public rights-of-way or on public property; therefore, land acquisition costs have not been included. The opinion of probable construction cost does not include costs for annual operation and maintenance. A complete description of the assumptions used in the development of the opinion of probable construction cost is provided in Appendix C. #### 7.2.2 Opinion of Probable Project Cost The opinion of probable project costs for the recommended existing and buildout collection system improvements is presented in Table 7-1. Table 7-2 summarizes the planning-level opinion of probable project costs by project type to mitigate existing system deficiencies, and to meet future growth in the City's collection system. As described above and detailed in Appendix B, the addition of flows that would result should the INP develop adds several gravity mains (some part of existing projects and some in new locations) to the CIP, and adds to the deficiency predicted for the Airport Lift Station. It should be noted that any in-tract pipelines that may be required as part of new development projects will be fully funded and installed by the project proponents. Therefore, these facilities and corresponding costs are not included. Table 7-2. Opinion of Probable Project Costs for Recommended Collection System Capital Improvements by Project Type^(a,b) | Collection System Improvement Type | Existing
(Near-Term) | Buildout | Total | |------------------------------------|-------------------------|-------------|-------------| | Gravity Main Improvements | \$1,636,000 | \$4,260,000 | \$5,896,000 | | Lift Station Improvements | ı | \$1,884,000 | \$1,844,000 | | Collection System Planning Studies | \$275,000 | - | \$275,000 | | Opinion of Probable Project Costs | \$1,911,000 | \$6,144,000 | \$8,055,000 | ⁽a) Costs shown are based on the March 2017 SF ENR CCI of 11609. ⁽b) Total Project Costs include the Estimated Construction Costs which include an estimating contingency of 30 percent of the Base Construction Cost, and Design and Construction Period Services equal to 50 percent of the Estimated Construction Costs. ## **Chapter 7** #### Prioritized Capital Improvement Program As shown, the total opinion of probable project costs for collection system improvements to support the City's existing and buildout sewer flows is \$8,055,000. Of this amount, approximately \$1,911,000 is required to address existing system deficiencies, and approximately \$6,144,000 is required to support future planned growth. Existing collection system improvements to address existing system deficiencies should be completed as funding permits. The construction of capital improvements for buildout conditions should be coordinated with the proposed schedules of new development to ensure that require infrastructure will be in place to serve future customers. The potential INP flows would add further improvements as described above, and would add approximately \$540,000 in probable construction costs to the total for future flows. The additional improvements required for potential INP flows are displayed on Figure 7-3. Details for these improvements can be found in Appendix B. Table 7-1 also shows the proposed cost allocation of the recommended improvements to existing and future collection system customers. Total capital costs allocated to existing users are approximately \$2.7 million, and total capital costs allocated to future users are approximately \$5.3 million. As shown, most of the recommended capital improvements specific provide benefits to either existing or future customers. Several gravity main improvement projects provide benefits to both existing and future customers. Costs for these projects were allocated based upon the extent of improvements required to serve existing customers versus the extent required to serve future customers. The improvement to the Airport Lift Station similarly provides benefits to both existing and future customers. Costs were allocated based upon the design flow to the lift station required by existing customers (1,480 gpm). #### Symbology WRP Water Reclamation Plant Ls Lift Station — Replace Existing Gravity Main — Gravity Main - - - Force Main Sewer Service Boundary Figure 7-1 Recommended Capital Improvement Program Existing Rebounded PWWF > City of Livermore Sewer Master Plan #### Symbology WRP Water Reclamation Plant Replace Existing Lift Station Ls Lift Station - - Replace Existing Force Main - - - Force Main Replace Existing Gravity Main — Gravity Main Sewer Service Boundary Figure 7-2 Recommended Capital Improvement Program Buildout PWWF > City of Livermore Sewer Master Plan #### Symbology WRP Water Reclamation Plant #### Lift Station Capacity Results - LS No Capacity Deficiency - Capacity Deficiency Under Both General Plan Build-Out and INP Scenarios - Manho #### **Gravity Main Capacity Results** - No Deficiency - Deficiency Under INP Scenario Only - Deficiency Under Both General Plan Build-out and INP Scenarios - -- Force Main - Sewer Service Boundary #### Note: 1. Labels shown are upstream and downstream manholes' ID of gravity main capacity deficiencies. # Figure 7-3 INP Hydraulic Evaluation Results City of Livermore Sewer Master PLan # **APPENDIX A** Collection System Hydraulic Model Modeler's Notebook # **Collection System Hydraulic Model Modeler's Notebook** #### **INTRODUCTION** The purpose of this Collection System Hydraulic Model Modeler's Notebook (Modeler's Notebook) is to document the facilities that are included in the City of Livermore's (City's) sewer
collection system and the manner in which these facilities are simulated in the City's sewer collection system hydraulic model. This Modeler's Notebook and associated database are compiled from the information available at the time of the model development. West Yost Associates (West Yost) developed this Modeler's Notebook to provide the City with a means to evaluate and review the information that West Yost has incorporated into the hydraulic model, and also to provide the City with a "living" reference for use by the City's modeling staff and outside parties that will be using the hydraulic model. The facility information provided is current as of January 2017. This Modeler's Notebook is organized as follows: - Model Development Notes - Model Scenarios - Calibration Simulations and Results #### **MODEL DEVELOPMENT NOTES** Information on the City hydraulic model development is included below. #### **Hydraulic Model Background** As part of the 2004 Master Plan, a hydraulic model of the City's collection system was developed utilizing H2OMap Sewer Pro software (H2OMap Sewer), a product of Innovyze, Inc. H2OMap Sewer was developed specifically for collection system capacity analysis and is widely used in the industry. The hydraulic model developed for the 2004 Master Plan was a skeletonized model that contained only the trunk gravity mains from the City's collection system. Small diameter gravity mains were excluded from the hydraulic model. For this Sewer Master Plan, the City desired a more comprehensive evaluation of collection system capacity, including the small diameter gravity mains that predominate the collection system. Further, the City desired that a clear link be developed between individual parcel flows and their connection to the collection system. Such a link requires that all gravity mains, regardless of diameter, be included in the hydraulic model. Therefore, as part of this Sewer Master Plan, the hydraulic model has been updated to include a network that contains all collection system gravity mains. As shown in Figure 1, the model was updated so that all infrastructure, including gravity mains, lift stations, and force mains, is up to date and represents the collection system as it currently exists in the field. #### **Model Naming Scheme** A specific naming scheme for network elements is used in the hydraulic model and is presented in Table 1. The gravity main and force main naming schemes are based on the "PipeID(New)" field in GIS. Further identification for wet wells, manholes, chambers, and outlets will be based on unique identification for each facility. Naming schemes for lift stations also include a reference to the associated wet well identification. Manhole and gravity main unique GIS identifiers were preserved as unique hydraulic model identifiers, where possible. In some cases, multiple manholes or gravity mains had the same identifier in GIS. Because the hydraulic model does not allow non-unique identifiers, the identifier of one of the elements was altered in the hydraulic model as follows: - Manholes with the same GIS ID were renamed to their GIS ID concatenated with their unique old facility ID; and - Pipes with the same GIS ID were renamed to their GIS ID concatenated with their unique old facility ID. The hydraulic model requires an upstream manhole and downstream manhole for each gravity main. In some cases, this geometry was not present in the GIS. In these cases, the geometry was fixed in the hydraulic model as follows: - In cases of a missing manhole (i.e., two proximate gravity mains with no manhole between them), the appropriate manhole was created in the hydraulic model. A unique identifier was created for this new manhole by adding an alphabetical suffix to the identifier of the nearest existing manhole in the model. - In cases of a manhole drawn over a gravity main that was not properly "split" to reflect the presence of the manhole, the gravity main was split and snapped to the manhole to reflect the proper upstream and downstream geometry in the network. Because splitting a gravity main creates a new gravity main in the hydraulic model, the new gravity main was given a unique identifier consisting of the original identifier with the addition of an alphabetical suffix. Inverts for the split gravity main were determined through interpolation using the length and slope of the original gravity main. | Table 1. Naming Scheme for Network Elements | | | |---|---|--| | Model Component | Naming Scheme | | | Gravity Pipelines | PipeID(New) | | | Force Main | PipelD(New) | | | Normal Manholes | MHID(New) | | | Chamber Manholes | CH-Lift Station Name "CH" = Chamber | | | Outlet Manholes | ——— MHID(New) | | | Wet Wells | WW-Lift Station Name "WW" = Wet Well | | | Wet Well Lift Station | LS-Lift Station Name "LS" = Lift Station | | #### **Model Element Information** The information associated with each element in the hydraulic model includes several data fields that have been added or filled by West Yost to include additional information for future reference and/or use. These additional data fields are listed below along with a brief description. #### Manhole - OLD_ID –This field contains the manhole old identification number - WY_OWNER Owner of the manhole - WY SOURCE This field indicates if the manhole was exported from GIS to the hydraulic model or if it was existing in the hydraulic model - ZONE This field shows the type of updates based on the geodatabase data received by January 2017 - 2016WY COM Comments by West Yost about the GIS data #### **Pipe** - OLD_ID This field contains the pipeline old identification number - WY OWNER Owner of the pipeline - WY_SOURCE This field indicates if the pipeline was exported from GIS to the hydraulic model or if it was existing in the hydraulic model - ZONE This field shows the type of updates based on the geodatabase data received by January 2017 - 2016WY_COM Comments by West Yost about the GIS data - INVERT ADJ Summarizes the type of adjustment on pipeline invert elevation - DOWN_STRU Old ID of downstream manhole - UP_STRU Old ID of upstream manhole - CIP Summarizes the CIP project ID - Material Material of the pipelines #### **GIS Gap Analysis** West Yost's GIS data gap analysis identified required additional data and discrepant data that would be determined to model and evaluate City's collection system. This information was discussed with City staff, and was requested where available. Attachment 1 includes the discussed information and proposed results that was confirmed by City's staff. #### **GIS Mapping Import** The January 2017 Geodatabase update was used to import properties and data into the modeling facilities. The unique ID developed for each facility was used to import data into the hydraulic model based on the mapping scheme for gravity mains as shown in Table 2 and manholes as shown in Table 3. Wet wells, lift stations and force mains were included in the hydraulic model based on as-built drawings provided by City staff. | Table 2. Gravity Main Pipeline Mapping | | | | |--|-----------------------------|-------------------------|--| | GIS Data Field | Description | Model Data Field | | | MATERIAL Pipeline material PIPEHYD->MATERIAL | | | | | MhUpID (New) Upstream Manhole ID LINK->FROM ^(a) | | | | | MhDownID (New) | Downstream Manhole ID | LINK->TO ^(a) | | | DIAMETER | Pipeline diameter in inches | PIPEHYD->DIAMETER | | | LENGTH | Pipe length in feet | PIPEHYD->LENGTH | | | INVERT_IN Upstream Invert PIPEHYD->FROM_INV Elevation in feet | | | | | INVERT_OUT Downstream Invert Elevation in feet PIPEHYD->FROM_INV | | | | | OWNER Pipeline owner WY_OWNER | | | | | (a) To and from link manhole identifications were revised to include the appropriate notation as described in Table 1. Naming Scheme for Network Elements. | | | | | | Table 3. Manhole Mapping | | | | |----------------|---------------------------------------|------------------|--|--| | GIS Data Field | Description | Model Data Field | | | | Rim | Upstream Rim Elevation in feet | MHHYD->RIM_ELEV | | | | OWNER | Name of Improvement Plan
Reference | WY_OWNER | | | #### **Flow Development** As discussed in Chapter 3 of Sewer Master Plan, ADWF is projected by applying a Return-to-Sewer ratio to average day water demands. This Return-to-Sewer ratio varies by usage type, with single family dwelling units typically having relatively low ratios, and commercial and industrial users typically have higher ratios. Buildout ADWF projections were developed using the baseline 2020 ADWF projections as a starting point. Projected flows from reasonably foreseeable development projects, as identified by City planning staff, were added to the 2020 ADWF projections. Projected flows from other vacant areas were added as well. The projected flows from both the development projects and the vacant land were tracked and summarized by inclusion in either the City Municipal service area or CalWater service area. #### **Model Load Fields** ADWF values were developed on an individual parcel basis. These values were imported into the hydraulic model through the establishment of a parcel-to-manhole link made possible by the inclusion of all gravity mains and all manholes in the hydraulic model. The parcel-to-manhole link was initiated using GIS proximity analysis to identify the manhole closest to each parcel. The parcel-to-manhole linkage established a loading manhole for each parcel in the City. ADWF values were summarized by manhole and these summarized flows were imported into the hydraulic model. The H2OMap Sewer modeling software contains 10 loading fields that can be used to organize flows being imported into the model. For the City's hydraulic model, flows
were organized into the loading columns as shown in Table 4. | Table 4. Load Column Description in the Hydraulic Model | | | | |---|---|--|--| | Load Column | Load Description | | | | Load 1 | ADWF of Existing Developed Areas in City Municipal Water Service Area | | | | Load 2 | ADWF of Existing Developed Areas in Cal Water Service Area | | | | Load 3 | Existing Point Sources and Existing ADWF of Reasonably Foreseeable Development Projects | | | | Load 4 | Future ADWF of Reasonably Foreseeable Development Projects in City Municipal Water Service Area | | | | Load 5 | Future ADWF of Reasonably Foreseeable Development Projects in Cal Water Service Area | | | | Load 6 | Future ADWF of Vacant Areas in City Municipal Area and Ruby Hill Development | | | | Load 7 | Future ADWF of Vacant Areas in Cal Water Service Area | | | | Load 8 | Existing RDII | | | | Load 9 | Future RDII | | | | Load 10 | Blank for Future Use | | | #### **MODEL SCENARIOS** H2OMap Sewer software allows the user to create unique scenarios to differentiate between different conditions for analysis within the same hydraulic model. In addition to the base scenarios, 10 additional scenarios were created in the model. These scenarios were created to evaluate various hydraulic conditions which include the following: - Wet Weather Flow Five scenarios were created in the hydraulic model - Average Dry Weather Flow Three scenarios were created in the hydraulic model - Peak Dry Weather Flow Two scenarios were created in the hydraulic model The scenario names and associated descriptions are presented in Table 5. | Table 5. Model Scenario Descriptions | | | | |--------------------------------------|---|--|--| | Scenario Name | Scenario Description | | | | BASE | Base Network | | | | EX_ADWF_2016 | 2016 Existing System and Existing Average Dry Weather Flow | | | | EX_PDWF_2016 | 2016 Existing System Peak Dry Weather Flow | | | | EX_PWWF_2016 | 2016 Existing System Peak Wet Weather Flow | | | | EX_DESIGN_2016 | 2016 Existing System Peak Wet Weather Flow with Existing CIP | | | | BO_ADWF | 2016 Existing System and Future Average Dry
Weather Flow | | | | BO_PDWF | 2016 Existing System and Future Peak Dry
Weather Flow | | | | BO_PWWF | 2016 Existing System and Future Peak Wet
Weather Flow | | | | BO_DESIGN | Future Peak Wet Weather Flow with Future CIP | | | | ISABEL_AVE_PROJECT_PWWF | Future Peak Wet Weather Flow Considering Isabel Neighborhood Development | | | | ISABEL_ADWF | Future Average Dry Weather Flow Considering Isabel Neighborhood Development | | | In addition, Table 19 (included at the end of this Modeler's Notebook) summarizes and defines the organization of each scenario in the hydraulic model based on the following items discussed below. #### **Model Data Sets** Within each scenario, data sets are used to describe specific system facilities and system conditions. Data sets can be common to multiple scenarios or they can be unique to a specific scenario. A brief description of each type of data set is provided below. #### Manhole Sets Manhole sets store the loads assigned to each individual manhole under a specified condition. Developed ADWF data is used to develop the associated patterns for each manhole. For the scenarios listed in Table 5, a unique manhole set is used to represent the various load conditions associated with each scenario, as shown in Table 6. | Table 6. Manhole Sets | | | | |-----------------------|---|--|--| | Manhole Set | Definition | | | | BASE | Default | | | | EX_ADWF_2016 | Existing Average Dry Weather Flow | | | | EX_PDWF_2016 | Diurnal Patterns with Peakable Existing Average Dry Weather Flow | | | | EX_PWWF_2016 | RDII and Diurnal Patterns with Peakable Existing Average Dry Weather Flow | | | | BUILDOUT_ADWF | Future Average Dry Weather Flow | | | | BUILDOUT_PDWF | Diurnal Patterns with Peakable Future Average Dry Weather Flow | | | | BUILDOUT_PWWF | RDII and Diurnal Patterns with Peakable Future Average Dry Weather Flow | | | | ISABEL_PWWF | RDII and Diurnal Patterns with Peakable Future
Average Dry Weather Flow Considering Isabel
Neighborhood Development | | | | ISABEL_ADWF | Future Average Dry Weather Flow Considering Isabel Neighborhood Development | | | #### Wet Well Sets Wet Well sets store the hydraulic modeling information (e.g., diameter, bottom elevation, minimum level, maximum level, and initial level) assigned to each individual wet well under a specified condition. Table 7 lists the wet well sets used in the hydraulic model. | Table 7. Wet Well Sets | | | | |------------------------|-------------------------|----------------------------------|--| | Wet Well Set | Description | Definition | | | BASE | Base Wet Well Set | Default (no data) | | | 2016-EXSYS | 2016 Existing Wet Wells | Wet Well data for 2016 scenarios | | #### Pipe Sets Pipe sets store the hydraulic modeling information (e.g., diameter, length, slope, roughness coefficient, and presence of parallel pipes of the same characteristics) assigned to each individual pipe or open channel under a specified condition. Pipes can be either gravity or force mains. Unique pipe sets were created and are shown in Table 8. | Table 8. Pipe Sets | | | | | | | | | | |--------------------|--------------------------------------|---|--|--|--|--|--|--|--| | Pipe Set | Definition | | | | | | | | | | BASE | Base Pipe Set | Default | | | | | | | | | 2016PIPESET | 2016 Existing Pipe System | Piping system for use in dry weather 2016 scenarios | | | | | | | | | ADJUST_INVERT | Adjusted Invert elevation | Piping system considering adjustment of nonrealistic invert elevation | | | | | | | | | EX_CIP | CIP to Serve Existing
Design Flow | Improved piping system to serve the existing design flow | | | | | | | | | BO_CIP | CIP to Serve Future
Design Flow | Improved piping system to serve the future design flow | | | | | | | | ### Pump Sets Pump sets store hydraulic modeling information (e.g., type of pump, diameter, elevation, design flow, design head, pump curve) assigned to each individual pump under a specified condition. Table 9 lists the pump sets used in the hydraulic model. | Table 9. Pump Sets | | | | | | | | |--|---------------|---------|--|--|--|--|--| | Pump Set Description Definition | | | | | | | | | BASE | Base Pump Set | Default | | | | | | | 2016-EXSYS 2016 Existing Pump System Pump data for 2016 scenario | | | | | | | | #### **Pump Control Sets** Pump Control sets store hydraulic modeling information (e.g., type of control method and on/off settings) assigned to each pump under a specified condition. Table 10 lists the pump control sets used in the hydraulic model. | Table 10. Pump Control Sets | | | | | | | | | |---------------------------------|-----------------------------|---|--|--|--|--|--|--| | Pump Set Description Definition | | | | | | | | | | BASE | Base Pump Set | Default | | | | | | | | 2016-EXSYS | 2016 Existing Pump Controls | Pump operational control for 2016 scenarios | | | | | | | #### **Extra Loading Sets** Extra Loading sets store additional loading hydraulic modeling information (e.g., unpeakable flow, peakable flow, and load patterns) assigned to each manhole under a specified condition. Table 11 lists the extra loading sets used in the hydraulic model. | Table 11. Extra Loading Sets | | | | | | | | | | |---|---|---------|--|--|--|--|--|--|--| | Extra Loading Sets Description Definition | | | | | | | | | | | BASE | Base Extra Loading Set | Default | | | | | | | | | 2016-EXSYS | 2016 Existing System Extra
Loading Set | Default | | | | | | | | #### Flow Split Sets Flow Split sets store the flow split method information (e.g., fixed percentage, variable flow, inflow-outflow or automatic split methods) assigned to each pipeline. Table 12 lists the flow split sets used in the hydraulic model. | Table 12. Flow Split Sets | | | | | | | | | | |---------------------------------------|--|----------------------------|--|--|--|--|--|--|--| | Flow Split Set Description Definition | | | | | | | | | | | BASE | Base Flow Split Set | Flow Split at each manhole | | | | | | | | | 2016-EXSYS | 2016 Existing System Flow
Split Set | Flow Split at each manhole | | | | | | | | #### Pipe Design Sets Pipe Design sets store depth-to-diameter design curves, depth-to-diameter analysis curves, replacement and parallel cost curves and user specified criteria for pipeline design. Table 13 lists the pipe design sets used in the hydraulic model. | Table 13. Pipe Design Sets | | | | | | | | |----------------------------|------------|--|--|--|--|--|--| | Pipe Design Set | Definition | | | | | | | | BASE | Default | | | | | | | | 2016-EXSYS | Default | | | | | | | #### Pipe Infiltration Sets Pipe Infiltration sets store the infiltration type information (e.g., none, pipe length, pipe diameter-length, pipe surface area, count based or pattern based methods) assigned to each pipeline. Table 14 lists the pipe infiltration sets used in the hydraulic model. | Table 14. Pipe Infiltration Sets | | | | | | | | |----------------------------------|---------|--|--|--|--|--|--| | Pipe Infiltration Set Definition | | | | | | | | | BASE | Default | | | | | | | | 2016-EXSYS | Default | | | | | | | #### **Operation Sets** Operation sets store the pattern and curve information (e.g., pump curve data) assigned to each facility. Table 15 lists the
operation sets used in the hydraulic model. | Table 15. Operation Sets | | | | | | | |--------------------------|------------|--|--|--|--|--| | Operation Set | Definition | | | | | | | BASE | Default | | | | | | | 2016-EXSYS | Default | | | | | | #### **Facility Manager** The Facility Manager defines the active facilities for each specified scenario by using query sets. Table 16 lists the query sets that are used in the Facility Manager under each specified condition. In the event a facility is abandoned with a new facility as replacement, a new facility will be added in the hydraulic model with a unique identification and the abandoned facility will also remain within the hydraulic model as inactive to keep historical mapping facilities (i.e. if a gravity main is replaced and abandoned due to a new gravity main, a parallel gravity main will be drawn in the hydraulic model and the "replaced" facility will be retired as opposed to changing the facility information of the "replaced" gravity main). | Table 16. Query Sets in Facility Manager | | | | | | | | | | |--|---------------------------------|---|--|--|--|--|--|--|--| | Query Set Description Condition | | | | | | | | | | | EX_SYSTEM_2016 | 2016 Existing System Facilities | Use with 2016 existing system scenarios | | | | | | | | ## **Simulation Options** Simulation Options contains the hydraulic simulation criteria necessary for the hydraulic engine to run. The Simulation Option can be altered to associate with a given condition. Table 17 lists the Simulation Options used in the hydraulic model. | Table 17. Simulation Options | | | | | | | | |------------------------------|--|--|--|--|--|--|--| | Simulation Option | Description | | | | | | | | BASE | Base Simulation Option | | | | | | | | 2016 | 2016 Simulation Option for ADWF scenarios | | | | | | | | PEAKING | 2016 Simulation Option for PDWF and PWWF scenarios | | | | | | | #### **Simulation Time** Simulation Time contains the hydraulic simulation time-step information. The Simulation Time can be altered to associate with a given condition. Table 18 lists the Simulation Time used in the hydraulic model. | Table 18. Simulation Time | | | | | | | | |--|-------------------------------------|--|--|--|--|--|--| | Simulation Time Description | | | | | | | | | BASE | Base Simulation Time (Steady State) | | | | | | | | PEAKING ^(a) 60-hour Extended Period Simulation | | | | | | | | | (a) Five Day simulation time required one-minute report time step, six-minute pump hydraulic time step, and one-hour flow pattern time step. | | | | | | | | # **Collection System Hydraulic Model Modeler's Notebook** #### **Model Scenario Organization** As discussed previously, each scenario in the hydraulic model is developed using various data sets, query sets, simulation options, and simulation time settings. Table 19 summarizes the data sets, query set, simulation option, and simulation time assigned to each scenario. #### Average Dry Weather Flow A 48-hour EPS was modeled using the ADWF values allocated into the hydraulic model with no peaking or diurnal patterns. The EPS ADWF scenarios are intended only as reference scenarios for how flows are peaked during the peak dry weather flow analysis. #### Peak Dry Weather Flow A 60-hour EPS was modeled using the ADWF values allocated into the hydraulic model and applying a diurnal peaking factor to simulate the PDWF. Diurnal patterns were developed for residential, commercial, and industrial type land uses and applied within the hydraulic model. These design diurnal patterns are independent of location within the collection system, and provide all new development and growth with consistent peak factors typical of their usage patterns. The design residential diurnal pattern can be seen on Figure 2. The industrial diurnal pattern can be seen on Figure 3. Finally, the commercial diurnal pattern can be seen on Figure 4. Figure 5 shows the modeled existing and buildout flow information for PDWF scenario at Water Reclamation Plant. #### Peak Wet Weather Flow As discussed in Chapter 3 of the Sewer Master Plan, PWWF is calculated by adding RDII to the PDWF. For this Sewer Master Plan, the design RDII factor for new development is 800 gpad. Existing development is expected to generate 800 gpad under existing timeframe evaluations, and 1,250 gpad under future timeframe evaluations. The increase in RDII generation is attributed to the physical deterioration of aging infrastructure for existing development and infrastructure. #### Table 19. Organization of Model Scenarios | | Specific Report | | | | | | | | | | | | | | |-------------------------|-----------------|-------------------|-----------------|--------------------|---------------|--------------|---------------|------------|------------------|-------------------|----------------|-----------------|-----------------------|---------------| | Scenario Name | Option | Simulation Option | Simulation Time | Facility Query Set | Manhole Set | Wet Well Set | Pipe Set | Pump Set | Pump Control Set | Extra Loading Set | Flow Split Set | Pipe Design Set | Pipe Infiltration Set | Operation Set | | BASE | BASE | BASE | BASE | ENTIRE NETWORK | BASE | EX_ADWF_2016 | 2016 | 2016 | 2016 | EX_SYSTEM_2016 | EX_ADWF_2016 | 2016-EXSYS | 2016PIPESET | 2016-EXSYS | EX_PDWF_2016 | 2016 | PEAKING | PEAKING | EX_SYSTEM_2016 | EX_PDWF_2016 | 2016-EXSYS | 2016PIPESET | 2016-EXSYS | EX_PWWF_2016 | 2016 | PEAKING | PEAKING | EX_SYSTEM_2016 | EX_PWWF_2016 | 2016-EXSYS | ADJUST_INVERT | 2016-EXSYS | EX_DESIGN_2016 | 2016 | PEAKING | PEAKING | EX_SYSTEM_2016 | EX_PWWF_2016 | 2016-EXSYS | EX_CIP | 2016-EXSYS | BO_ADWF | 2016 | 2016 | 2016 | EX_SYSTEM_2016 | BUILDOUT_ADWF | 2016-EXSYS | 2016PIPESET | 2016-EXSYS | BO_PDWF | 2016 | PEAKING | PEAKING | EX_SYSTEM_2016 | BUILDOUT_PDWF | 2016-EXSYS | 2016PIPESET | 2016-EXSYS | BO_PWWF | 2016 | PEAKING | PEAKING | EX_SYSTEM_2016 | BUILDOUT_PWWF | 2016-EXSYS | ADJUST_INVERT | 2016-EXSYS | BO_DESIGN | 2016 | PEAKING | PEAKING | EX_SYSTEM_2016 | BUILDOUT_PWWF | 2016-EXSYS | BO_CIP | 2016-EXSYS | ISABEL_AVE_PROJECT_PWWF | 2016 | PEAKING | PEAKING | EX_SYSTEM_2016 | ISABEL_PWWF | 2016-EXSYS | ADJUST_INVERT | 2016-EXSYS | ISABEL_ADWF | 2016 | 2016 | 2016 | EX_SYSTEM_2016 | ISABEL_ADWF | 2016-EXSYS | 2016PIPESET | 2016-EXSYS #### Symbology WRP Water Reclamation Plant LS Lift Station — Gravity Main in 2004 Model — Gravity Main in 2016 Model - - - Force Main Sewer Service Boundary # Figure 1 Updated Model Network City of Livermore Sewer Master Plan WEST YOST ASSOCIATES w/c/438/12-15-05/wp/smp/mn/072216_Figures2-5 Last Revised: 05-09-16 ## ATTACHMENT 1 GIS Gap Analysis | | | | | Tab | le 1. List of | | vith Unknown In | | | | | | | |----------------------|--|---|----------------------|---|----------------------|----------------------|-----------------------------------|-----------------|-------------------|---------------------------------|-------------------------------|-------------------------------------|-------------------------------------| | | | MhUpstream | Upstream Invert | Mh Downstream | Downstream
Invert | Upstream Invert | vert Elevation Downstream Invert | Sou | | | atus | Upstream Invert | Downstream Invert | | 2138
741 | PipeID
PPS5F2TP2138
STS3F2TP0741 | ID
PPS5F2T011B
STS3F2T014 | 0.00
0.00 | ID
PPS5F2T011A
STS3F2T013 | 0.00
0.00 | 0.00
0.00 | Elevation, ft
0.00
0.00 | Upstream Invert | Downstream Invert | Upstream Invert Unknown Unknown | Unknown Unknown | Elevation, ft
522.789
487.744 | Elevation, ft
522.765
487.552 | | 722
721
7072 | STS3F2TP0722
STS3F2TP0721
DTS6E2TP7072 | TICK221
TICK218
DTS5E3T023A | 0.00
0.00
0.00 | STS3F2T014
STS3F2T014
DTS5E3T022B | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 487.770
487.770
477.928 | 487.744
487.744
477.782 | | 7071
7066 | DTS6E2TP7071
DTS6E2TP7066 | DTS5E3T023B
DTS5E3T022B | 0.00
0.00 | DTS5E3T023A
DTS5E3T022A | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 477.938
477.782 | 477.928
477.670 | | 7644
7645
7646 | STS3G2P7644
STS3G2P7645
STS3G2P7646 | STS3G2069
STS3G2068
STS3G2067 | 0.00
0.00
0.00 | STS3G2068
STS3G2067
STS3G2066 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 516.659
516.392
516.287 | 516.392
516.287
516.017 | | 7641
7643
7647 | STS3G2P7641
STS3G2P7643
STS3G2P7647 | STS3G2072
STS3G2070
STS3G2066 | 0.00
0.00
0.00 | STS3G2077
STS3G2069
STS3G2065 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 517.222
517.002
516.017 | 517.047
516.659
515.749 | | 7648
3627 | STS3G2P7648
EAS6F2P3627 | STS3G2065
EAS6F2014 | 0.00
0.00 | STS3G2064
EAS6F2098 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 515.749
528.081 | 515.369
527.500 | | 7642
4015
4449 | STS3G2P7642
DTS6E2P4015
DTS6E4P4449 | STS3G2077
DTS6E2042B
DTS6E4107 | 0.00
0.00
0.00 | STS3G2070
DTS6E2042A
DTS6E4106 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | • | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 517.047
495.322
507.370 | 517.002
494.974
506.374 | |
4101
2642
2644 | DTS6E4P4101
ACS5C1P2642
ACS5C1P2644 | DTS6E4090
ACS5C1013
PRIVATE2131 | 0.00
0.00
0.00 | TICK3564
ACS5C1012 | 0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 494.752
391.946
392.271 | 494.351
391.255
391.946 | | 4040
3399 | DTS6E2P4040
DTS6E1P3399 | DTS6E2047
PRIVATE2878 | 0.00
0.00 | ACS5C1013
DTS6E2046
DTS6E1078 | 0.00
0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 499.728
477.789 | 499.479
476.871 | | 6640
6630
6629 | DTS6E2P6640
DTS6E2P6630
DTS6E2P6629 | DTS6E2089
DTS6E2082
DTS6E2091 | 0.00
0.00
0.00 | DTS6E2088
DTS6E2081
DTS6E2090 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | • | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 489.306
488.522
489.714 | 489.059
488.040
489.523 | | 6625
6628
6648 | DTS6E2P6625
DTS6E2P6628
DTS6E2P6648 | DTS6E2090
DTS6E2085
DTS6E2084 | 0.00
0.00
0.00 | DTS6E2088
DTS6E2084
DTS6E2081 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 489.523
488.916
488.715 | 489.059
488.715
488.040 | | 4372
2444 | DTS6E4P4372
ACS5C1P2444 | DTS6E4103
STUB1943 | 0.00 | DTS6E4102
ACS5C1001 | 0.00 | 0.00 | 0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 506.833
361.704 | 506.023
361.401 | | 4443
2646
2649 | DTS6E4P4443
ACS5C1P2646
ACS5C1P2649 | DTS6E4094
ACS5C1018
PRIVATE2136 | 0.00
0.00
0.00 | DTS6E4072
ACS5C1017
ACS5C1013 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 505.370
393.496
392.168 | 504.110
392.866
391.946 | | 4306
6639
4388 | DTS6E4P4306
DTS6E2P6639
DTS6E4P4388 | DTS6E4100
DTS6E2088
DTS6E4102 | 0.00
0.00
0.00 | DTS6E4099
DTS6E2087
DTS6E4101 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 504.805
489.059
506.023 | 504.050
488.667
505.340 | | 4389
4328 | DTS6E4P4389
JLS6E3P4328 | DTS6E4101
JLS6E3065 | 0.00
0.00 | DTS6E4099
JLS6E3064 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 505.340
470.894 | 504.050
469.737 | | 3159
4472
4020 | DTS6E1P3159
DTS6E4P4472
DTS6E2P4020 | DTS6E1075
DTS6E4108
DTS6E2046A | 0.00
0.00
0.00 | TICK2683
DTS6E4107
DTS6E2046 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | • | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 475.222
507.679
499.863 | 474.596
507.370
499.479 | | 6649
6637 | DTS6E2P6649
DTS6E2P6637 | DTS6E2087
DTS6E2086 | 0.00
0.00 | DTS6E2086
DTS6E2081 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 488.667
488.475 | 488.475
488.040 | | 6636
6635
6634 | DTS6E2P6636
DTS6E2P6635
DTS6E2P6634 | DTS6E2081
DTS6E2080
DTS6E2079 | 0.00
0.00
0.00 | DTS6E2080
DTS6E2079
DTS6E2078 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 488.040
487.735
487.310 | 487.735
487.310
486.526 | | 6631
4410
4411 | DTS6E2P6631
DTS6E4P4410
DTS6E4P4411 | DTS6E2083
DTS6E4106
DTS6E4094 | 0.00
0.00
0.00 | DTS6E2082
DTS6E4094
DTS6E4093 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 488.968
506.374
505.371 | 488.522
505.370
504.078 | | 2522
2387 | ACS5C1P2522
ACS5C1P2387 | ACS5C1023
ACS5C1014 | 0.00
0.00 | ACS5C1011
ACS5C1010 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 390.984
391.240 | 390.660
389.840 | | 2500
2501
4334 | ACS5C1P2500
ACS5C1P2501
DTS6E4P4334 | PRIVATE1977 PRIVATE1999 DTS6E4099 | 0.00
0.00
0.00 | PRIVATE1999
ACS5C1015
DTS6E4093 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 392.909
392.590
505.325 | 392.590
392.216
504.078 | | 2389
2390
2391 | ACS5C1P2389
ACS5C1P2390
ACS5C1P2391 | ACS5C1003
ACS5C1002
ACS5C1010 | 0.00
0.00
0.00 | ACS5C1002
ACS5C1001
ACS5C1009 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 372.070
370.470
389.740 | 370.470
368.470
388.140 | | 2392
2393 | ACS5C1P2392
ACS5C1P2393 | ACS5C1009
ACS5C1008 | 0.00
0.00 | ACS5C1008
ACS5C1007 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 388.040
383.270 | 383.370
380.770 | | 2536
4110
3554 | ACS5C1P2536
DTS6E2P4110
JLS6D2P3554 | PRIVATE2033
DTS6E2074
JLS6D2083 | 0.00
0.00
0.00 | ACS5C1023
DTS6E2073
JLS6D2082 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 391.414
486.018
458.400 | 390.984
485.373
457.793 | | 3555
4181
2566 | JLS6D2P3555
DTS6E4P4181 | JLS6D2084
DTS6E4091 | 0.00
0.00
0.00 | JLS6D2082
DTS6E4090
ACS5C1023 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 458.704
499.415 | 457.793
494.752
390.984 | | 2567
2569 | ACS5C1P2566
ACS5C1P2567
ACS5C1P2569 | ACS5C1012
PRIVATE2059
ACS5C1017 | 0.00
0.00 | ACS5C1012
ACS5C1015 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 391.255
391.538
392.866 | 391.255
392.216 | | 2570
2475
2382 | ACS5C1P2570
ACS5C1P2475
ACS5C1P2382 | PRIVATE2061
PRIVATE1973
ACS5C1005 | 0.00
0.00
0.00 | ACS5C1017
ACS5C1009
ACS5C1004 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 393.140
390.183
376.970 | 392.866
389.600
373.770 | | 2383
2385 | ACS5C1P2383
ACS5C1P2385 | ACS5C1006
ACS5C1007 | 0.00
0.00 | ACS5C1005
ACS5C1006 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 379.070
380.667 | 377.070
379.070 | | 2386
3570
3456 | ACS5C1P2386
DTS6E1P3570
JLS6D2P3456 | ACS5C1004
DTS6E1081
JLS6D2085 | 0.00
0.00
0.00 | ACS5C1003
DTS6E1080
JLS6D2084 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | -
-
- | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 373.670
479.813
459.128 | 372.070
478.685
458.704 | | 2493
2494
2499 | ACS5C1P2493
ACS5C1P2494
ACS5C1P2499 | PRIVATE1989
ACS5C1011
ACS5C1015 | 0.00
0.00
0.00 | ACS5C1011
ACS5C1010
ACS5C1014 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | • | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 391.122
390.660
392.216 | 390.660
389.940
391.440 | | 2502
2504 | ACS5C1P2502
ACS5C1P2504 | PRIVATE2000
PRIVATE2002 | 0.00
0.00 | PRIVATE1999
ACS5C1015 | 0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 392.757
392.468 | 392.590
392.216 | | 4023
4307
4248 | DTS6E2P4023
DTS6E4P4307
DTS6E4P4248 | DTS6E2060
DTS6E4099
DTS6E4092 | 0.00
0.00
0.00 | DTS6E2046
DTS6E4098
DTS6E4091 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 501.151
504.050
501.551 | 499.479
502.797
499.415 | | 4247
4335
4178 | DTS6E4P4247
DTS6E4P4335
DTS6F3P4178 | DTS6E4098
DTS6E4093
DTS6F3006 | 0.00
0.00
0.00 | DTS6E4092
DTS6E4092
DTS6F3005 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 502.797
504.078
503.807 | 501.551
501.551
503.008 | | 4146
4017 | DTS6F3P4146
DTS6E2P4017 | DTS6F3005
DTS6E2042A | 0.00
0.00 | DTS6F3003
DTS6E2042 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 503.008
494.974 | 501.708
494.686 | | 3282
3400
3281 | DTS6E1P3282
DTS6E1P3400
DTS6E1P3281 | DTS6E1076
DTS6E1078
DTS6E1077 | 0.00
0.00
0.00 | TICK2703
DTS6E1076
DTS6E1076 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 475.730
476.871
476.364 | 474.609
475.730
475.730 | | 4634
4639
4635 | DTS7F1P4634
DTS7F1P4639
DTS7F1P4635 | DTS7F1032
DTS7F1034
DTS7F1033 | 0.00
0.00
0.00 | DTS7F1031
DTS7F1033
DTS7F1031 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 521.872
523.910
522.729 | 521.573
522.729
521.573 | | 4509
4505 | DTS6E4P4509
DTS6E4P4505 | DTS6E4076
DTS6E4073 | 0.00
0.00 | DTS6E4075
DTS6E4072 | 0.00
0.00 | 0.00 | 0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 514.957
505.069 | 514.546
504.110 | | 4507
4508
3344 | DTS6E4P4507
DTS6E4P4508
DTS6E1P3344 | DTS6E4074
DTS6E4075
DTS6E1011 | 0.00
0.00
0.00 | DTS6E4073
DTS6E4074
TICK2860 | 0.00
0.00
0.00 | 0.00
0.00
0.00 |
0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 513.486
514.546
463.878 | 512.424
513.486
463.173 | | 6040
1827
6170 | DTS6E2P6040
STS4E4P1827
PPS4G3P6170 | DTS6E2064
STS4E3060
PPS4G3058 | 0.00
0.00
0.00 | DTS6E2052
STS4E3059
PPS4G3057 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 493.335
440.910
519.708 | 492.429
440.296
518.655 | | 6748
4308 | JLS6E3P6748
JLS6E3P4308 | JLS6E3030B
JLS6E3041A | 0.00
0.00 | JLS6E3030A
JLS6E3041 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 459.341
462.153 | 458.890
462.083 | | 1860
1774
686 | STS4E4P1860
STS4E4P1774
STS2G2P0686 | STS4E3060A
STS4E3057
STS2G2020 | 0.00
0.00
0.00 | STS4E3060
STS4E3056
STS2G2019 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 441.458
439.519
514.643 | 440.910
438.978
514.196 | | 2341
6050
684 | JLS5D2P2341
PPS5G1P6050
STS2G2P0684 | JLS5D2101
PPS5G1044
STS2G2021 | 0.00
0.00
0.00 | JLS5D2100
PPS5G1043
STS2G2019 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 447.182
517.794
515.255 | 446.655
517.075
514.196 | | 2471
446 | JLS4E3P2471
PPS5G1P0446 | JLS4E3022
PPS5G117C | 0.00
0.00 | JLS4E3021
PPS5G1017B | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 450.885
523.475 | 450.427
523.201 | | 644
1493
4475 | JLS5D1P0644
PPS4H1P1493
DTS6E4P4475 | JLS5D1029
PPS4H1028
DTS6E4021 | 0.00
0.00
0.00 | JLS5D1028
PPS4H1027
DTS6E4020 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 420.032
532.535
482.410 | 419.522
531.512
481.872 | | 5250
394
5018 | ECS7E4P5250
JLS5D1P0394
ECS7E2P5018 | ECS7E4023
JLS5D1028
ECS7E2034 | 0.00
0.00
0.00 | ECS7E4022
JLS5D1026
ECS7E2033 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 524.347
419.522
540.906 | 523.504
418.681
540.286 | | 4975
1448 | ECS7E2P4975
PPS4H1P1448 | ECS7E2037
PPS4H1029 | 0.00
0.00 | ECS7E2035
PPS4H1028 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 540.473
533.393 | 539.721
532.535 | | 642
2451
2452 | JLS5D1P0642
JLS5D2P2451
JLS5D2P2452 | JLS5D1027
JLS5D2099
JLS5D2100 | 0.00
0.00
0.00 | JLS5D1026
JLS5D2098
JLS5D2098 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 419.193
447.059
446.655 | 418.681
445.957
445.957 | | 395
388
6633 | JLS5D1P0395
JLS5D1P0388
DTS6E2P6633 | JLS5D1030
JLS5D1022
DTS6E2078 | 0.00
0.00
0.00 | JLS5D1028
JLS5D1020
DTS6E2077 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 420.026
416.943
486.526 | 419.522
416.086
486.437 | | 2694
636 | DTS6E1P2694
JLS5D1P0636 | STUB2189
JLS5D1021 | 0.00
0.00 | DTS6E1035A
JLS5D1020 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 466.281
416.594 | 465.996
416.086 | | 637
2573
5004 | JLS5D1P0637
PPS5G2P2573
ECS7E2P5004 | JLS5D1023
PPS5G2006
ECS7E2035 | 0.00
0.00
0.00 | JLS5D1022
PPS5G2005
ECS7E2030 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 417.452
542.358
539.721 | 416.943
537.236
539.332 | | 5006
5007
5014 | ECS7E2P5006
ECS7E2P5007
ECS7E2P5014 | ECS7E2032
ECS7E2031
ECS7E2033 | 0.00
0.00
0.00 | ECS7E2031
ECS7E2030
ECS7E2031 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 540.523
540.050
540.286 | 540.050
539.332
540.050 | | 4976
1802 | ECS7E2P4976
STS4E4P1802 | ECS7E2036
STS4E3059 | 0.00
0.00 | ECS7E2035
STS4E3058 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | | - | Unknown
Unknown | Unknown
Unknown | 540.284
440.296 | 539.721
440.090 | | 444
549
3802 | JLS5D3P0444
ECS7E3P549
JLS6D2P3802 | JLS5D3069
ECS7E3126
JLS6D2094 | 0.00
0.00
0.00 | JLS5D3068
ECS7E3125
JLS6D2093 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 418.158
527.955
452.961 | 417.251
528.030
452.689 | | 2374
2384 | JLS5D2P2374
JLS5D2P2384
PPS6G2P3973 | JLS5D2096
JLS5D2095
PPS6G2060A | 0.00
0.00 | JLS5D2094
JLS5D2094 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 445.044
445.308 | 444.841
444.841
568.978 | | 3973
2325
385 | JLS5D2P2325
JLS5C2P0385 | JLS5D2102
JLS5C2075 | 0.00
0.00
0.00 | PPS6G2060
JLS5D2101
JLS5C2074 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 569.084
447.591
402.436 | 447.182
401.678 | | 387
7377
2508 | JLS5D1P0387
JLS6E3P7377
JLS4E3P2508 | JLS5D1020
JLS6E3033A
JLS4E3021 | 0.00
0.00
0.00 | JLS5D1019
JLS6E3033
JLS4E3020 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 416.086
462.195
450.427 | 404.443
462.097
449.862 | | 5479
1799 | ECS7E3P5479
STS4E4P1799 | ECS7E3074
STS4E3058 | 0.00
0.00 | ECS7E3073
STS4E3057 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 523.787
440.090 | 502.373
439.519 | | 3947
550
2845 | PPS6G2P3947
ECS7E3P0550
DTS5E3P2845 | PPS6G2064
ECS7E3127
DTS5E3068 | 0.00
0.00
0.00 | PPS6G2063
ECS7E3126
DTS5E3067 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 571.660
528.524
474.307 | 570.521
527.955
474.401 | | 7512
7514
7515 | ECS7E2P7512
ECS7E2P7514
ECS7E2P7515 | ECS7E2039
ECS7E2040
ECS7E2042 | 0.00
0.00
0.00 | ECS7E2038
ECS7E2039
ECS7E2041 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 540.234
540.281
540.391 | 539.637
540.234
540.299 | | 7515 | EUS/EZP/515 | EU3/E2042 | 0.00 | EUS/E2041 | 0.00 | 0.00 | 0.00 | | - | UNKNOWN | UNKNOWN | 540.391 | 540.299 | | | | | | Tab | le 1. List of | | vith Unknown In | | <u> </u> | | | | | |----------------------|--|---|--------------------------|--------------------------------------|----------------------------|------------------------|-----------------------------------|-----------------|-----------------------|---------------------------------|-------------------------------|-------------------------------------|-------------------------------------| | | | MhUpstream | ormation Upstream Invert | Mh Downstream | Downstream
Invert | Upstream Invert | vert Elevation Downstream Invert | | ırce | | atus | Upstream Invert | Downstream Invert | | 7452
742 | PipeID
STS2H3P7452
STS3F2TP0742 | ID
STS2H3034B
STS3F2T022 | 0.00
0.00 | ID
STS2H3034A
STS3F2T013 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | Upstream Invert | Downstream Invert | Upstream Invert Unknown Unknown | Unknown Unknown | Elevation, ft
521.856
487.982 | Elevation, ft
521.434
487.552 | | 7511
7513 | ECS7E2P7511
ECS7E2P7513 | ECS7E2038
ECS7E2041 | 0.00 | ECS7E2030
ECS7E2040 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 539.637
540.299 | 539.332
540.281 | | 7561
7562
445 | RHS8D4P7561
RHS8D4P7562
JLS5D3P0445 | RHS8D4101
RHS8D4102
JLS5D3083A | 0.00
0.00
0.00 | RHS8D4005A
RHS8D4101
JLS5D3083 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 439.317
440.132
410.297 | 438.779
439.317
409.739 | | 7635
1504
7610 | ACS2C4P7635
STS3F4P1504
JLS5D2P7610 | ACS4C4010A
STS3F4102
JLS5D2100A | 0.00
0.00
0.00 | ACS4C4008A
STS3F4099
JLS5D2100 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 374.098
501.884
446.790 | 372.786
501.027
446.655 | | 7610
7612
7625 | JLS5D2P7610
JLS5D2P7612
STS2H3P7625 | JLS5D2100A
JLS5D2082A
STS2H3057C | 0.00 | JLS5D2100
JLS5D2082
STS2H3057B | 0.00 | 0.00 | 0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 454.090
529.639 | 446.655
453.920
529.330 | | 6065
7385 | DTS5E3P6065
DTS5E3P7385 | DTS5E3054
DTS5E3050 | 0.00 | DTS5E3050
DTS5E3049 | 0.00 | 0.00 | 0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 504.145
504.057 | 504.057
499.405 | | 2866
3848
4910 | DTS5E3P2866
EAS6F1P3848
ECS7D2P4910 | STUB2368
EAS6F1099
ECS7D2063A | 0.00
0.00
0.00 | DTS5E3052
EAS6F1098
ECS7D2063 | 0.00
0.00
0.00 | 0.00
0.00
0.00 |
0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 506.867
522.880
443.763 | 506.830
516.366
443.390 | | 4929
4638 | ECS7D2P4929
DTS7F1P4638 | ECS7D2065
DTS7F1035 | 0.00
0.00
0.00 | ECS7D2063A
DTS7F1034 | 0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 445.810
524.355 | 444.851
523.910 | | 7609
7828
7818 | ECS7D2P7609
ACS4D1P7828
ACS4D1P7818 | STUB7598
STUB7596 | 0.00
0.00
0.00 | ECS7D2098A
ACS4D1128
ACS4D1149 | 0.00
0.00
0.00 | 0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 470.986
428.583
436.666 | 470.319
428.410
436.539 | | 7804
7805
7811 | ACS4D1P7804
ACS4D1P7805
ACS4D1P7811 | STUB7597
STUB7587
ACS4D1171 | 0.00
0.00
0.00 | ACS4D1150
ACS4D1171
ACS4D1170 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 436.962
438.826
438.492 | 436.852
438.492
438.200 | | 7811
7813
7679 | ACS4D1P7813
STS2G3P7679 | ACS4D1171
ACS4D1151
STS2G3034 | 0.00 | ACS4D1170
ACS4D1150
STS2G3033 | 0.00 | 0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 438.492
437.465
508.186 | 438.200
436.852
507.970 | | 7678
7680
7681 | STS2G3P7678
STS2G3P7680 | STS2G3032
STS2G3033
ACS4C2026B | 0.00
0.00
0.00 | STS2G3026
STS2G3032
ACS4C2026A | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 507.551
507.970 | 507.000
507.551
454.927 | | 548
547 | ACS4C2P7681
ECS7E3P548
ECS7E3P547 | ECS7E3125
ECS7E3124 | 0.00
0.00
0.00 | ECS7E3124
ECS7E3123 | 0.00 | 0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 455.524
527.930
527.390 | 527.490
526.597 | | 551
7827
7831 | ECS7E3P0551
ACS4D1P7827
ACS4D1P7831 | TICK5829
STUB7599
ACS4D1128 | 0.00
0.00
0.00 | ECS7E3124
ACS4D1128
ACS4D1127 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | 0.00
0.00
0.00 | - | - | Unknown
Unknown
Unknown | Unknown
Unknown
Unknown | 527.550
428.476
428.410 | 527.490
428.410
428.314 | | 7816
7806 | ACS4D1P7816
ACS4D1P7806 | ACS4D1150
ACS4D1149 | 0.00 | ACS4D1127
ACS4D1149
ACS4D1148 | 0.00
0.00 | 0.00
0.00 | 0.00
0.00 | - | - | Unknown
Unknown | Unknown
Unknown | 436.852
436.539 | 436.539
436.154 | | 6108
5151
5152 | STS4E4TP6108
ECS7E3P5151
ECS7E3P5152 | TICK5955
ECS7E3014
ECS7E3022 | 0.00
0.00
0.00 | STS4E4T008
ECS7E3013
ECS7E3021 | 448.88
497.90
496.15 | 0.00
0.00
0.00 | 448.88
497.90
496.15 | - | GIS
GIS
GIS | Unknown
Unknown | - | 448.899
498.381
496.739 | 448.880
497.900
496.150 | | 2178
745 | PPS5F2TP2178
STS2F4P0745 | PPS5F2T011A
STUB243 | 0.00 | PPS5F2T011
STS2F4021 | 0.00
479.32 | 0.00
0.00 | 522.58
479.32 | - | Model
GIS | Unknown
Unknown
Unknown | - | 522.765
479.419 | 522.580
479.320 | | 1295
281
1066 | STS3F4P1295
ACS4C2P0281
PPS3H4P1066 | STS3F4064A
STUB5560
TICK567 | 0.00
0.00
0.00 | STS3F4064
ACS4C2051
PPS3H4048 | 494.58
405.36
568.79 | 0.00
0.00
0.00 | 494.58
405.36
568.79 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 494.746
405.448
568.894 | 494.580
405.360
568.790 | | 6746
6745 | JLS6E3P6746
JLS6E3P6745 | JLS6E3036A
JLS6E3036B | 0.00 | JLS6E3036B
JLS6E3026A | 0.00
0.00 | 460.75
0.00 | 0.00
457.02 | Interpolate | -
Model | Need Confirmation
Unknown | -
Unknown
- | 460.750
457.625 | 459.790
457.022 | | 860
2803
5206 | STS2G4P0860
DTS5E3P2803
ECS7E4P5206 | STS2G4039
DTS5E3020
ECS7E4022 | 0.00
0.00
0.00 | STS2G4037
DTS5E3019
ECS7E4021 | 517.00
508.00
522.44 | 0.00
0.00
0.00 | 517.00
508.00
522.44 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 517.753
509.010
523.504 | 517.000
508.000
522.440 | | 272
3726 | ACS4C2P0272
JLS6D2P3726 | ACS4C2010
JLS6D2086 | 0.00 | ACS4C2009
JLS6D2081 | 414.38
456.60 | 0.00
0.00 | 414.38
456.60 | - | GIS
GIS | Unknown
Unknown | - | 414.710
458.012 | 414.380
456.600 | | 2595
5126
2525 | JLS5D2P2595
ECS7D4P5126
PPS5G2P2525 | JLS5D2106
ECS7D4043
PPS5G2039 | 0.00
0.00
0.00 | JLS5D2103
ECS7D4042
PPS5G2038 | 450.73
469.21
546.00 | 0.00
0.00
0.00 | 450.73
469.21
546.00 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 451.154
469.654
546.434 | 450.730
469.210
546.000 | | 1924
5255 | PPS4F4P1924
ECS7E3P5255 | PPS4F4002
ECS7E3064 | 0.00 | PPS4F4001
ECS7E3063 | 515.99
502.08 | 0.00
0.00 | 515.99
502.08 | - | GIS
GIS | Unknown
Unknown | - | 516.478
502.712 | 515.990
502.080 | | 3421
1006
6225 | JLS5D3P3421
STS2G3P1006
PPS3H4P6225 | JLS5D3022
STS2G3018
STUB6090 | 0.00
0.00
0.00 | JLS5D3021
STS2G3013
PPS3H4047 | 426.31
499.30
581.08 | 0.00
0.00
0.00 | 426.31
499.30
581.08 | | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 426.905
500.058
581.337 | 426.310
499.300
581.080 | | 5934
1908 | DTS5E3P5934
PPS4F4P1908 | DTS5E3082
PPS4F4003 | 0.00
521.20 | DTS5E3006
PPS4F4002 | 475.90
0.00 | 0.00
521.20 | 475.90
0.00 | -
GIS | GIS
- | Unknown
- | -
Unknown | 477.396
521.200 | 475.900
521.038 | | 1909
2248
4296 | PPS4F4P1909
JLS5C2P2248
JLS6E3P4296 | PPS4F4006
TICK1742
PRIVATE3807 | 525.21
0.00
0.00 | PPS4F4002
JLS5C2033
JLS6E3039 | 0.00
403.33
462.42 | 525.21
0.00
0.00 | 0.00
403.33
462.42 | GIS
-
- | GIS
GIS | -
Unknown
Unknown | Unknown
-
- | 525.210
403.431
462.775 | 525.040
403.330
462.420 | | 4304
4365 | JLS6E3P4304
DTS6E4P4365 | JLS6E3041
DTS6E4043 | 0.00 | JLS6E3037
DTS6E4042 | 461.61
492.04 | 0.00 | 461.61
492.04 | - | GIS
GIS | Unknown
Unknown | - | 462.083
492.484 | 461.610
492.040 | | 4250
638
2710 | JLS6E3P4250
JLS5D1P0638
JLS5D2P2710 | JLS6E3036
JLS5D1025
JLS5D2031 | 0.00
0.00
0.00 | JLS6E3036A
JLS5D1024
JLS5D2030 | 460.75
417.80
438.17 | 0.00
0.00
0.00 | 460.75
417.80
438.17 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 461.365
418.757
438.750 | 460.750
417.800
438.170 | | 2712
1487 | JLS5D2P2712
STS3F4P1487 | JLS5D2081
STS3F4098 | 0.00
500.37 | JLS5D2079
STS3F4097 | 452.42
0.00 | 0.00
500.37 | 452.42
0.00 | -
GIS | GIS
- | Unknown
- | -
Unknown | 452.897
500.370 | 452.420
500.083 | | 3667
3451
5288 | JLS6D2P3667
JLS6D1P3451
ECS7E3P5288 | JLS6D2042
JLS6D1062
ECS7E3052 | 0.00
0.00
0.00 | JLS6D2041
JLS6D1061
ECS7E3051 | 449.50
415.54
522.81 | 0.00
0.00
0.00 | 449.50
415.54
522.81 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 449.657
416.046
523.230 | 449.500
415.540
522.810 | | 5289
2152 | ECS7E3P5289
DTS5E2P2152 | ECS7E3047
STUB1619 | 0.00 | ECS7E3046
DTS5E2007 | 525.93
476.70 | 0.00
0.00 | 525.93
476.70 | - | GIS
GIS | Unknown
Unknown | - | 526.375
477.131 | 525.930
476.700 | | 137
3138
690 | ACS4C4P0137
JLS5D3P3138
STS2G2P0690 | STUB5916
JLS5D3110
STS2G2029 | 0.00
0.00
0.00 | ACS4C4055
JLS5D3109
STS2G2028 | 389.33
420.00
509.25 | 0.00
0.00
0.00 | 389.33
420.00
509.25 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 389.587
420.234
509.573 | 389.330
420.000
509.250 | | 691
5822 | STS2G2P0691
ECS8E1P5822 | TICK190
ECS8E1054 | 0.00 | STS2G2028
ECS8E1053 | 509.25
476.99 | 0.00
0.00 | 509.25
476.99 | - | GIS
GIS | Unknown
Unknown | - | 509.762
477.497 | 509.250
476.990 | | 2489
1059 | DTS6E4P4474
PPS5G3P2489
STS3G2P1059 | DTS6E4026
PPS5G3013
STS3G2058 | 0.00
0.00
0.00 | DTS6E4025
PPS5G3011
STS3G2009 | 485.20
527.80
510.85 | 0.00
0.00
0.00 | 485.20
527.80
510.85 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 485.928
528.641
511.253 | 485.200
527.800
510.850 | | 5132
3404
3415 | RHS7D3P5132
EAS6F1P3404
PPS6G2P3415 | ECS7D3T004A
EAS6F1061
PPS6G2004 | 0.00
0.00
0.00 | ECS7D3T004
EAS6F1060
PPS6G2003 | 436.79
517.90
551.04 | 0.00
0.00
0.00 | 436.79
517.90
551.04 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 437.274
518.179
551.884 | 436.790
517.900
551.040 | | 4416
4419 | DTS6E4P4416
EAS6F4P4419 | DTS6E4055
EAS6F4027 | 0.00 | DTS6E4054
EAS6F4026 | 498.52
0.00 | 0.00
0.00 | 498.52
537.20 | - | GIS
Model | Unknown
Unknown | - | 499.161
538.618 | 498.520
537.200 | | 4421
4429
1428 | JLS6E3P4421
JLS6E3P4429
STS3G3P1428 | JLS6E3053
JLS6E3058
STS3G3037 | 0.00
468.50
0.00 | JLS6E3052
JLS6E3044
STS3G3036 | 471.40
0.00
506.53 | 0.00
468.50
0.00 | 471.40
0.00
506.53 | GIS
- | GIS
-
GIS | Unknown
-
Unknown | -
Unknown
- | 472.243
468.500
507.111 | 471.400
467.123
506.530 | | 3951
3953 | DTS6E2P3951
EAS6F1P3953 | DTS6E2026
EAS6F1110 | 0.00 | DTS6E2025
EAS6F1109 | 488.04
525.20 | 0.00
0.00 | 488.04
525.20 | - | GIS
GIS | Unknown
Unknown | - | 488.532
525.702 | 488.040
525.200 | | 5316
5319
6198 | ECS7E3P5316
ECS7E3P5319
EAS6G4P6198 | ECS7E3096
ECS7E3069
EAS6D4085 | 0.00
0.00
0.00 |
ECS7E3095
ECS7E3068
EAS6G4084 | 521.55
500.99
580.30 | 0.00
0.00
0.00 | 521.55
500.99
580.30 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 522.005
501.679
581.467 | 521.550
500.990
580.300 | | 4358
3458 | EAS6F4P4358
JLS5D3P3458 | EAS6F4065
JLS5D3092 | 0.00 | EAS6F4063
JLS5D3091 | 542.65
419.38 | 0.00
0.00 | 542.65
419.38 | - | GIS
GIS | Unknown
Unknown | - | 543.117
419.703 | 542.650
419.380 | | 283
285
4385 | ACS4C2P0283
ACS4C2P0285
EAS6F4P4385 | TICK5565
STUB5564
EAS6F4072P | 0.00
0.00
0.00 | ACS4C2028
ACS4C2028
EAS6F4072 | 413.59
413.59
553.02 | 0.00
0.00
0.00 | 413.59
413.59
553.02 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 413.629
413.846
553.508 | 413.590
413.590
553.020 | | 4013
4911 | PPS6G2P4013
ECS7E1P4911 | PPS6G2068
ECS7E1035 | 0.00 | PPS6G2067
ECS7E1034 | 572.22
491.02 | 0.00
0.00 | 572.22
491.02 | - | GIS
GIS | Unknown
Unknown | - | 573.069
491.588 | 572.220
491.020 | | 3169
5848
305 | DTS6E1P3169
ECS8E1P5848
PPS4H4P0305 | DTS6E1057
ECS8E1077
PPS4H4053 | 0.00
0.00
580.00 | DTS6E1056
ECS8E1076
PPS4H4052 | 463.60
492.70
0.00 | 0.00
0.00
580.00 | 463.60
492.70
0.00 | -
GIS | GIS
GIS | Unknown
Unknown
- | -
-
Unknown | 464.392
493.202
580.000 | 463.600
492.700
579.416 | | 5579
2623
6121 | ECS8E2P5579
PPS5G2P2623
PPS4G3P6121 | ECS8E2022
PPS5G2007
PPS4G3063 | 0.00
543.17
0.00 | ECS8E2021
PPS5G2006
PPS4G3062 | 543.45
0.00
514.10 | 0.00
543.17
0.00 | 543.45
0.00
514.10 | -
GIS
- | GIS
-
GIS | Unknown
-
Unknown | -
Unknown
- | 543.599
543.170
514.199 | 543.450
542.358
514.100 | | 3396
685 | PPS6G2P3396
STS2G2P0685 | PPS6G2010
STS2G2019 | 0.00 | PPS6G2008
STS2G2017 | 553.10
0.00 | 0.00
0.00 | 553.10
513.42 | - | GIS
Model | Unknown
Unknown | - | 553.526
514.196 | 553.100
513.320 | | 4154
4344
4350 | JLS6E3P4154
JLS6E3P4344
JLS6E3P4350 | PRIVATE3628
JLS6E3044
JLS6E3064 | 0.00
0.00
0.00 | JLS6E3010
JLS6E3043
JLS6E3046 | 449.45
0.00
0.00 | 0.00
0.00
0.00 | 449.45
464.73
468.61 | - | GIS
Model
Model | Unknown
Unknown
Unknown | - | 450.190
464.913
469.737 | 449.450
464.730
468.610 | | 817
2240 | STS2F4P0817
JLS5D1P2240 | STS2F4008
JLS5D1015 | 0.00 | STS2F4007
JLS5D1014 | 492.39
421.13 | 0.00
0.00 | 492.39
421.13 | - | GIS
GIS | Unknown
Unknown | - | 493.098
421.637 | 492.390
421.130 | | 1640
2129
3894 | PPS4H4P1640
JLS5D1P2129
PPS6G2P3894 | PPS4H4051
JLS5D1086
PPS6G2052A | 0.00
0.00
0.00 | PPS4H4050
JLS5D1085
PPS6G2052 | 585.10
425.80
562.62 | 0.00
0.00
0.00 | 585.10
425.80
562.62 | - | GIS
GIS | Unknown
Unknown
Unknown | - | 585.597
426.527
562.827 | 585.100
425.800
562.620 | | 3581
2811 | DTS6E2P3581
DTS5E3P2811 | DTS6E2049
DTS5E3069 | 0.00
474.42 | DTS6E2038
DTS5E3068 | 488.05
0.00 | 0.00
474.42 | 488.05
0.00 | -
GIS | GIS
- | Unknown
- | -
Unknown | 488.993
474.420 | 488.050
474.307 | | 4969
2695
3269 | RHS7D3P4969
DTS6E1P2695
PPS5G4P3269 | RHS7D3047
DTS6E1036
PPS5G4016 | 0.00
470.65
0.00 | RHS7D3046
DTS6E1035A
PPS5G4015 | 417.24
0.00
566.68 | 0.00
470.65
0.00 | 417.24
0.00
566.68 | -
GIS
- | GIS
-
GIS | Unknown
-
Unknown | -
Unknown
- | 417.892
470.650
567.566 | 417.240
470.169
566.680 | | 1891
4830 | JLS4E3P1891
ECS7D2P4830 | JLS4E3003
ECS7D2022 | 0.00
0.00 | JLS4E3002
ECS7D2021 | 434.52
454.83 | 0.00
0.00 | 434.52
454.83 | - | GIS
GIS | Unknown
Unknown | - | 435.090
455.226 | 434.520
454.830 | | 2144
4274
4709 | JLS5D1P2144
JLS6E3P4274
DTS6F3P4709 | JLS5D1018
PRIVATE3756
PRIVATE4203 | 0.00
0.00
0.00 | JLS5D1017
JLS6E3039
DTS6F3034 | 423.73
462.42
530.37 | 0.00
0.00
0.00 | 423.73
462.42
530.37 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 424.109
462.790
530.500 | 423.730
462.420
530.370 | | 4710
4957 | DTS6F3P4710
ECS7D2P4957 | PRIVATE4204
ECS7D2071 | 0.00 | DTS6F3035
ECS7D1T010 | 530.83
434.69 | 0.00 | 530.83
434.69 | - | GIS
GIS | Unknown
Unknown | - | 531.020
435.283 | 530.830
434.690 | | 4959
4960
1700 | ECS7E1P4959
ECS7D2P4960
ACS4C4P1700 | STUB4452
ECS7D2024
ACS4C4056 | 0.00
0.00
0.00 | ECS7E1098
ECS7D2023
ACS4C4037 | 507.17
456.64
396.80 | 0.00
0.00
0.00 | 507.17
456.64
396.80 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 507.257
457.437
396.930 | 507.170
456.640
396.800 | | 422
2842 | JLS5C2P0422
PPS5G2P2842 | JLS5C2065
PPS5G2048 | 0.00 | JLS5C2056
PPS5G2047 | 0.00
558.91 | 0.00
0.00 | 405.40
558.91 | - | Model
GIS | Unknown
Unknown | - | 406.565
559.148 | 405.400
558.910 | | 5312
4447
2671 | ECS7E3P5312
EAS6F4P4447
DTS5E3P2671 | ECS7E3041
EAS6F4025
DTS5E3096 | 0.00
0.00
0.00 | ECS7E3040
EAS6F4024
DTS5E3094 | 525.71
539.62
512.00 | 0.00
0.00
0.00 | 525.71
539.62
512.00 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 526.558
540.191
512.372 | 525.710
539.620
512.000 | | 2672
2674 | DTS5E3P2672
JLS5D2P2674 | DTS5E3095
JLS5D2082 | 0.00 | DTS5E3094
JLS5D2079 | 512.00
452.42 | 0.00
0.00 | 512.00
452.42 | - | GIS
GIS | Unknown
Unknown | - | 512.305
453.920 | 512.000
452.420 | | 2675
2396
2397 | JLS5D2P2675
PPS5G3P2396
PPS5G3P2397 | JLS5D2080
PPS5G3012
PPS5G3011 | 0.00
0.00
527.80 | JLS5D2079
PPS5G3011
PPS5G3010 | 452.42
527.80
0.00 | 0.00
0.00
527.80 | 452.42
527.80
0.00 | -
-
GIS | GIS
GIS | Unknown
Unknown
- | -
-
Unknown | 452.976
528.398
527.800 | 452.420
527.800
527.319 | | 3920
2007 | PPS6G2P3920
JLS5D1P2007 | PPS6G2069
JLS5D1103 | 573.27
0.00 | PPS6G2068
JLS5D1102 | 0.00
425.28 | 573.27
0.00 | 0.00
425.28 | GIS
- | -
GIS | -
Unknown | Unknown
- | 573.270
425.853 | 572.423
425.280 | | 5497
6710
4229 | ECS7E3P5497
DTS6E1P6710
JLS6E3P4229 | DTS6E1080
JLS6E3033 | 524.44
0.00
0.00 | ECS7E3074
DTS6E1T025
JLS6E3032 | 0.00
478.64
0.00 | 524.44
0.00
0.00 | 0.00
478.64
461.26 | GIS
-
- | -
GIS
Model | -
Unknown
Unknown | Unknown
-
- | 524.440
478.685
462.097 | 523.787
478.640
461.260 | | 1580
1277 | STS3G3P1580
STS3F4P1277 | STS3G3054A
STS3F4020 | 0.00
496.70 | STS3G3054
STS3F4019 | 508.56
0.00 | 0.00
496.70 | 508.56
0.00 | -
GIS | GIS
- | Unknown
- | -
Unknown | 508.762
496.700 | 508.560
496.075 | | 1278
5960
397 | STS3F4P1278
DTS5E3P5960
JLS5C2P0397 | STS3F4019
DTS5E3004
JLS5C2066 | 0.00
0.00
0.00 | STS3F4018
DTS5E3002
JLS5C2066A | 491.73
472.90
0.00 | 0.00
0.00
0.00 | 491.73
472.90
403.30 | - | GIS
GIS
Model | Unknown
Unknown
Unknown | - | 492.198
473.417
403.475 | 491.730
472.900
403.300 | | | | | | | | | | | | | | | | | | | 010 1 7 | | Tab | ole 1. List of | | vith Unknown In | | | 2: | | | | |----------------------|---|---|-------------------------------|--|-----------------------------------|-------------------------------|-----------------------------------|--------------------|---------------------------|---|--------------------|-------------------------------------|-------------------------------------| | | Directo | MhUpstream | Upstream Invert | Mh Downstream | Downstream
Invert | Upstream Invert | Downstream Invert | Sou | | | atus | Upstream Invert | Downstream Invert | | 3212
5005 | PipeID
DTS5E3P3212
ECS7E2P5005 | ID
DTS5E3007
ECS7E2030 | Elevation, ft
0.00
0.00 | ID
DTS5E3006
ECS7E2029 | Elevation, ft
475.90
538.00 | Elevation, ft
0.00
0.00 | Elevation, ft
475.90
538.00 | Upstream Invert | Oownstream Invert GIS GIS | Upstream Invert Unknown Unknown | Downstream Invert | Elevation, ft
476.512
539.332 | Elevation, ft
475.900
538.000 | | 5009
1500
3556 | ECS7D2P5009
PPS4H1P1500
JLS6D2P3556 | ECS7D2076
PPS4H1027
JLS6D2082 | 0.00
0.00
0.00 | ECS7D2075
PPS4H1026
JLS6D2081 | 438.88
531.10
456.60 | 0.00
0.00
0.00 | 438.88
531.10
456.60 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 439.572
531.512
457.793 | 438.880
531.100
456.600 | | 4318
4323
5874 | DTS6E4P4318
JLS6E3P4323
ECS8E1P5874 | DTS6E4029
JLS6E3042A
ECS8E1065 | 0.00
0.00
0.00 | DTS6E4028
JLS6E3042
ECS8E1064 | 488.13
0.00
475.62 | 0.00
0.00
0.00 | 488.13
461.28
475.62 | - | GIS
Model
GIS | Unknown
Unknown | - | 488.858
462.403
475.891 | 488.130
461.280
475.620 | | 7380
5384 | PPS4F4P7380
ECS7E4P5384 | PPS4F4058A
ECS7E4063 | 0.00 | PPS4F4058
ECS7E4062 | 533.98
527.92 | 0.00 | 533.98
527.92 | | GIS
GIS | Unknown
Unknown
Unknown | - | 534.382
528.449 | 533.980
527.920 | | 5386
4496
4135 | ECS7E4P5386
JLS6E3P4496
JLS6E3P4135 | ECS7E4064
JLS6E3062
JLS6E3094A | 530.70
0.00
0.00 | ECS7E4063
JLS6E3061
JLS6E3094 | 0.00
0.00
466.44 | 530.70
471.44
0.00 | 0.00
0.00
466.44 | GIS
Interpolate | -
-
GIS | - Need Confirmation Unknown | Unknown
Unknown |
530.700
471.440
466.519 | 529.403
470.478
466.440 | | 5104
896 | ECS7E3P5104
STS2F4P0896 | ECS7E3005
STS2F4024 | 0.00
0.00 | ECS7E3004
STS2F4023 | 482.88
486.06 | 0.00
0.00 | 482.88
486.06 | - | GIS
GIS | Unknown
Unknown | - | 483.615
486.411 | 482.880
486.060 | | 864
7084
4184 | STS2F4P0864
DTS6E2P7084
JLS6E3P4184 | STS2F4026
DTS6E2003A
JLS6E3030A | 0.00
0.00
0.00 | STS2F4025
DTS6E2003
JLS6E3030 | 488.65
0.00
457.41 | 0.00
0.00
0.00 | 488.65
463.32
457.41 | • | GIS
Model
GIS | Unknown
Unknown
Unknown | - | 489.267
463.742
458.890 | 488.650
463.600
457.410 | | 6284
6285
2563 | EAS6G4P6284
EAS6G4P6285 | EAS6G4019
EAS6G4018
PPS5G3020 | 569.00
0.00
0.00 | EAS6G4018
EAS6G4017
PPS5G3019 | 0.00
566.40
528.70 | 569.00
0.00
0.00 | 0.00
566.40
528.70 | GIS
- | GIS
GIS | -
Unknown | Unknown
- | 569.000
566.537
528.905 | 568.725
566.400
528.700 | | 1786
2998 | PPS5G3P2563
PPS5I1P1786
PPS5G4P2998 | TICK1270
PPS5G4046 | 589.98
0.00 | PPS5I1019
PPS5G4045 | 0.00
548.50 | 589.98
0.00 | 0.00
548.50 | GIS
- | -
GIS | Unknown
-
Unknown | Unknown
- | 589.980
549.269 | 589.892
548.500 | | 2313
5222
1394 | JLS5D2P2313
ECS7E3P5222
STS3G4P1394 | JLS5D2113
ECS7E3025
STS3G4091 | 0.00
0.00
520.84 | JLS5D2112
ECS7E3024
STS3G4090 | 443.47
510.89
0.00 | 0.00
0.00
520.84 | 443.47
510.89
0.00 | -
-
GIS | GIS
GIS | Unknown
Unknown
- | -
-
Unknown | 443.847
511.926
520.840 | 443.470
510.890
520.190 | | 3798
3801
3803 | JLS6D1P3798
JLS6D2P3801
JLS6D2P3803 | TICK3318
JLS6D2092
JLS6D2093 | 0.00
0.00
0.00 | JLS6D1093
JLS6D2090A
JLS6D2090 | 430.36
456.05
452.10 | 0.00
0.00
0.00 | 430.36
456.05
452.10 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 430.548
457.601
452.689 | 430.360
456.050
452.100 | | 2380
3972 | ACS5C1P2380
PPS6G2P3972 | ACS5C1001
PPS6G2060 | 0.00 | ACS4C3T001
PPS6G2059 | 360.80
568.77 | 0.00 | 360.80
568.77 | | GIS
GIS | Unknown
Unknown | - | 365.000
568.978 | 360.800
568.770 | | 3482
5406
3814 | DTS6E1P3482
RHS7D3P5406
PPS6G2P3814 | DTS6E1082
RHS7D3088
PPS6G2057 | 478.65
0.00
0.00 | DTS6E1082A
RHS7D3087
PPS6G2056 | 0.00
439.20
566.12 | 478.65
0.00
0.00 | 0.00
439.20
566.12 | GIS
-
- | -
GIS
GIS | -
Unknown
Unknown | Unknown
-
- | 478.650
439.509
567.062 | 475.900
439.200
566.120 | | 4466
2205
5356 | DTS6E4P4466
DTS5E2P2205
ECS7E3P5356 | DTS6E4072
DTS5E2024
STUB4848 | 0.00
0.00
0.00 | DTS6E4065
DTS5E2023
ECS7E3088 | 503.84
533.24
517.50 | 0.00
0.00
0.00 | 503.84
533.24
517.50 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 505.087
533.869
517.617 | 503.840
533.240
517.500 | | 4543
3938 | JLS6E3P4543
JLS6D2P3938 | JLS6E3063
JLS6D2027 | 0.00
0.00 | JLS6E3062
JLS6D2026 | 471.44
441.20 | 0.00
0.00 | 471.44
441.20 | - | GIS
GIS | Unknown
Unknown | - | 472.004
441.537 | 471.440
441.200 | | 3521
3539
2542 | JLS5D3P3521
JLS5D3P3539
JLS5D2P2542 | JLS5D3113
JLS5D3019
JLS5D2094 | 0.00
0.00
0.00 | JLS5D3112
JLS5D3018
JLS5D2093 | 421.70
423.91
443.53 | 0.00
0.00
0.00 | 421.70
423.91
443.53 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 422.439
424.375
444.841 | 421.700
423.910
443.530 | | 6096
3145 | STS4F3TP6096
EAS6F2P3145 | TICK5963
EAS6F2045 | 0.00
521.27 | STS4F3T004
EAS6F2044 | 456.55
0.00 | 0.00
521.27 | 456.55
0.00 | -
GIS | GIS
- | Unknown
- | -
Unknown | 456.618
521.270 | 456.550
520.635 | | 2322
2330
4430 | JLS5D2P2322
JLS4E3P2330
JLS6E3P4430 | JLS5D2111
JLS4E3018A
JLS6E3060 | 0.00
0.00
0.00 | JLS5D2109
JLS4E3018
JLS6E3058 | 442.35
447.75
468.50 | 0.00
0.00
0.00 | 442.35
447.75
468.50 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 442.818
448.732
469.002 | 442.350
447.750
468.500 | | 916
5106 | JLS6E3P4432
STS2H3P0916
ECS7D2P5106 | JLS6E3061
STS2H3044
ECS7D2117 | 0.00
0.00
0.00 | JLS6E3047
STS2H3044A
ECS7D2115 | 0.00
532.04
475.93 | 0.00
0.00
0.00 | 471.44
532.04
475.93 | - | Model
GIS
GIS | Unknown
Unknown
Unknown | - | 472.402
532.090
476.572 | 471.440
532.040
475.930 | | 5109
3314 | ECS7E1P5109
JLS5D3P3314 | ECS7E1063
JLS5D3040 | 0.00
0.00 | ECS7E1059
JLS5D3039 | 506.60
428.33 | 0.00
0.00 | 506.60
428.33 | - | GIS
GIS | Unknown
Unknown | - | 507.259
428.789 | 506.600
428.330 | | 1162
384
386 | PPS3H4P1162
JLS5C2P0384
JLS5D1P0386 | STUB658
JLS5C2074
JLS5D1019 | 0.00
0.00
0.00 | PPS3H4077
JLS5C2060
JLS5D1001 | 552.62
0.00
0.00 | 0.00
0.00
0.00 | 552.62
401.73
404.40 | - | GIS
Model
Model | Unknown
Unknown
Unknown | - | 552.898
401.678
404.443 | 552.620
401.230
404.400 | | 5033
4376
4377 | ECS7E1P5033
DTS6F3P4376
DTS6F3P4377 | ECS7E1106
DTS6F3049
DTS6F3050 | 0.00
0.00
522.78 | ECS7E1105
DTS6F3048
DTS6F3049 | 505.74
521.60
0.00 | 0.00
0.00
522.78 | 505.74
521.60
0.00 | -
-
GIS | GIS
GIS | Unknown
Unknown | -
-
Unknown | 505.964
521.925
522.780 | 505.740
521.600
522.310 | | 3674
4872 | JLS6D1P3674
ECS7D2P4872 | JLS6D1087
ECS7D2046 | 0.00
0.00 | JLS6D1086
ECS7D2045 | 423.40
445.29 | 0.00 | 423.40
445.29 | - | GIS
GIS | Unknown
Unknown | - | 423.850
445.669 | 423.400
445.290 | | 4879
941
1429 | ECS7E1P4879
STS2G4P0941
STS3G3P1429 | STUB4371
STS2G4072
STS3G3033 | 0.00
0.00
0.00 | ECS7E1034
STS2G4071
STS3G3032 | 491.02
516.83
506.12 | 0.00
0.00
0.00 | 491.02
516.83
506.12 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 491.454
516.995
506.436 | 491.020
516.830
506.120 | | 1214
1220
7419 | PPS3H4P1214
STS3G3P1220
JLS4E3P7419 | STUB706
STS3G3022
JLS4E3006 | 0.00
0.00
441.69 | PPS3H4078
STS3G3021
JLS4E3005 | 554.12
0.00
0.00 | 0.00
0.00
441.69 | 554.12
498.91
0.00 | -
-
GIS | GIS
Model | Unknown
Unknown | -
-
Unknown | 554.399
499.053
441.690 | 554.120
498.910
440.880 | | 7420
4210 | JLS4E3P7420
DTS6E4P4210 | JLS4E3004
DTS6E4069 | 440.88
0.00 | JLS4E3002A
DTS6E4068 | 0.00
497.79 | 440.88
0.00 | 0.00
497.79 | GIS
- | -
GIS | -
Unknown | Unknown
- | 440.880
498.471 | 440.080
497.790 | | 992
1996
1167 | STS2G3P0992
JLS5D1P1996
STS3F4P1167 | STS2G3007
JLS5D1075
STS3F4036A | 0.00
0.00
0.00 | STS2G3006
JLS5D1074
STS3F4036 | 0.00
422.60
492.96 | 0.00
0.00
0.00 | 492.33
422.60
492.96 | • | Interpolate
GIS
GIS | Unknown
Unknown
Unknown | Need Confirmation | 493.455
423.921
493.569 | 492.330
422.600
492.960 | | 4172
3779 | JLS6D1P4172
PPS6G2P3779 | JLS6D1126
PPS6G2041 | 0.00
0.00 | JLS6D1125
PPS6G2040 | 0.00
560.78 | 0.00
0.00 | 417.66
560.78 | - | Model
GIS | Unknown
Unknown | - | 418.492
561.299 | 417.490
560.780 | | 5755
850
851 | ECS8E1P5755
STS2G4P0850
STS2F4P0851 | STS2G4004
STS2F4006 | 0.00
0.00
0.00 | STS2G4003
STS2F4005 | 482.89
508.95
491.47 | 0.00
0.00
0.00 | 482.89
508.95
491.47 | - | GIS
GIS | Unknown
Unknown
Unknown | - | 483.291
509.754
492.135 | 482.890
508.950
491.470 | | 2496
1533
6581 | PPS5G3P2496
STS3G4P1533
RHS9E1P6581 | PPS5G3014
STS3G4037
PRIVATE6423 | 535.80
0.00
0.00 | PPS5G3013
STS3G4035
RHS9E1066 | 0.00
516.32
473.27 | 535.80
0.00
0.00 | 0.00
516.32
473.27 | GIS
-
- | -
GIS
GIS | -
Unknown
Unknown | Unknown
-
- | 535.800
516.586
473.473 | 535.502
516.320
473.270 | | 1563
2507 | STS3G3P1563
JLS4E3P2507 | STS3G3059
JLS4E3020 | 0.00 | STS3G3058
JLS4E3019 | 507.19
449.21 | 0.00 | 507.19
449.21 | - | GIS
GIS | Unknown
Unknown | - | 507.925
449.862 | 507.190
449.210 | | 1460
1465
1467 | STS3F4P1460
STS3F4P1465
STS3F4P1467 | STS3F4134A
STS3F4079
STS3F4136 | 0.00
0.00
0.00 | STS3F4134
STS3F4078
STS3F4135 | 498.68
0.00
491.42 | 0.00
0.00
0.00 | 498.68
500.08
491.42 | - | GIS
Model
GIS | Unknown
Unknown
Unknown | - | 498.763
500.884
491.504 | 498.680
500.080
491.420 | | 5778
2327
4678 | ECS8E1P5778
PPS5F1P2327
DTS7F1P4678 | ECS8E1058
TICK1828
DTS7F1016 | 0.00
0.00
0.00 | ECS8E1057
PPS5F1002
DTS7F1015 | 473.78
519.28
512.76 | 0.00
0.00
0.00 | 473.78
519.28
512.76 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 474.518
519.376
512.936 | 473.780
519.280
512.760 | | 3650
1793 | PPS6G2P3650
PPS4F4P1793 | PPS6G2043A
PPS4F4101 | 0.00
0.00 | PPS6G2043
PPS4F4102 | 565.67
511.56 | 0.00
0.00 | 565.67
511.56 | - | GIS
GIS | Unknown
Unknown | - | 565.931
511.925 | 565.670
511.560 | | 840
844
7456 | STS2G4P0840
STS2H1P0844
WLS4B3P7456 | STS2G4009
STS2H1063
WY7241 | 0.00
0.00
0.00 | STS2G4008
STS2H1062
WLS4B3012 | 506.69
0.00
344.30 | 0.00
0.00
0.00 | 506.69
527.22
344.30 | - | GIS
Model
GIS | Unknown
Unknown
Unknown | - | 507.197
528.357
344.333 | 506.690
527.220
344.300 | | 3657
2519
5068 | PPS6G2P3657
PPS5G2P2519
ECS7E1P5068 |
PPS6G2044A
PPS5G2005
ECS7E1054A | 0.00
0.00
0.00 | PPS6G2044
PPS5G2004
ECS7E1054 | 568.80
536.38
495.00 | 0.00
0.00
0.00 | 568.80
536.38
495.00 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 569.253
537.236
495.484 | 568.800
536.380
495.000 | | 5078
786 | RHS7D3P5078
STS2G4P0786 | RHS7D3061
STS2G4013 | 0.00 | RHS7D3060
STS2G4012 | 424.64
508.32 | 0.00 | 424.64
508.32 | - | GIS
GIS | Unknown
Unknown | - | 424.866
508.934 | 424.640
508.320 | | 1970
5983
4021 | JLS5D1P1970
DTS6E2P5983
DTS6E2P4021 | JLS5D1081
DTS6E2060
DTS6E2059 | 0.00
0.00
503.92 | JLS5D1080
DTS6E2059
DTS6E2058 | 423.29
503.92
0.00 | 0.00
0.00
503.92 | 423.29
503.92
0.00 | -
-
GIS | GIS
GIS | Unknown
Unknown
- | -
-
Unknown | 423.861
504.270
503.920 | 423.290
503.920
502.950 | | 7057
4682
867 | ACS4C2P7057
DTS7F1P4682
STS2G4P0867 | ACS4C2101
DTS7F1014
STS2G4038 | 0.00
0.00
0.00 | ACS4C2100
DTS7F1013
STS2G4037 | 0.00
511.17
517.00 | 0.00
0.00
0.00 | 443.39
511.17
517.00 | | Model
GIS
GIS | Unknown
Unknown
Unknown | - | 444.265
511.578
517.278 | 443.388
511.170
517.000 | | 868
6584 | STS2H1P0868
RHS9E1P6584 | TICK369
PRIVATE6426 | 0.00
0.00 | STS2H1064
RHS9E1014 | 527.71
453.67 | 0.00
0.00 | 527.71
453.67 | | GIS
GIS | Unknown
Unknown | - | 527.816
453.873 | 527.710
453.670 | | 6583
6582
4619 | RHS9E1P6583
RHS9E1P6582
DTS6E4P4619 | PRIVATE6427
PRIVATE6424
DTS6E4047 | 0.00
0.00
0.00 | RHS9E1013
RHS9E1065
DTS6E4046 | 453.35
472.17
498.72 | 0.00
0.00
0.00 | 453.35
472.17
498.72 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 453.553
472.373
499.045 | 453.350
472.170
498.720 | | 4625
4704
3995 | RHS6D3P4625
DTS6F3P4704
PPS6G2P3995 | RHS6D3018
PRIVATE4197
PPS6G2063 | 0.00
0.00
0.00 | RHS6D3017
DTS6F3033
PPS6G2062 | 418.31
529.93
570.01 | 0.00
0.00
0.00 | 418.31
529.93
570.01 | | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 419.066
530.103
570.521 | 418.310
529.930
570.010 | | 893
4361 | STS2H4P0893
RHS6D3P4361 | STS2H4031A
RHS6D3042 | 0.00
0.00 | STS2H4031
RHS6D3041 | 545.33
426.30 | 0.00
0.00 | 545.33
426.30 | - | GIS
GIS | Unknown
Unknown | - | 545.429
426.671 | 545.330
426.300 | | 2547
2553
2557 | JLS5D2P2547
JLS5D2P2553
PPS4G3TP2557 | JLS5D2098
JLS5D2016
PPS4G3T002 | 0.00
0.00
509.66 | JLS5D2097
JLS5D2015
PPS4G3T001 | 445.10
438.21
0.00 | 0.00
0.00
509.66 | 445.10
438.21
0.00 | -
-
GIS | GIS
GIS
- | Unknown
Unknown
- | -
-
Unknown | 445.957
438.543
509.660 | 445.100
438.210
509.585 | | 2561
2816
4591 | PPS5G3P2561
PPS5G1P2816
DTS7F1P4591 | PPS5G3032A
TICK2310
DTS7F1042 | 0.00
0.00
0.00 | PPS5G3032
PPS5G1016
DTS7F1041 | 526.52
521.52
509.48 | 0.00
0.00
0.00 | 526.52
521.52
509.48 | | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 526.635
521.616
510.086 | 526.520
521.520
509.480 | | 7050
7052 | EAS6F1P7050
DTS6E2TP7052 | EAS6F1036A
DTS5E3T022A | 0.00
0.00 | EAS6F1036R
DTS5E3T022 | 496.40
0.00 | 0.00
0.00 | 496.40
476.10 | - | GIS
Model | Unknown
Unknown | - | 497.600
477.670 | 496.400
477.660 | | 4139
1108
5278 | DTS6E4P4139
PPS3H4P1108
ECS7E4P5278 | DTS6E4090
STUB598
ECS7E4024 | 0.00
0.00
524.74 | DTS6E4067
PPS3H4081
ECS7E4023 | 494.88
561.07
0.00 | 0.00
0.00
524.74 | 494.88
561.07
0.00 | -
-
GIS | GIS
GIS
- | Unknown
Unknown
- | -
-
Unknown | 496.134
561.349
524.740 | 494.880
561.070
524.347 | | 4669
2278
6585 | ECS7D2P4669
DTS5E2P2278
RHS9E1P6585 | ECS7D2010
DTS5E2042
PRIVATE6425 | 0.00
0.00
0.00 | ECS7D2009
DTS5E2041
RHS9E1015 | 444.03
535.80
464.17 | 0.00
0.00
0.00 | 444.03
535.80
464.17 | | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 444.537
536.639
464.373 | 444.030
535.800
464.170 | | 3729
7085 | DTS6E2P3729
DTS6E2P7085 | DTS6E2007
DTS6E2004 | 0.00
0.00 | DTS6E1T021
DTS6E2003A | 466.50
0.00 | 0.00
464.08 | 466.50
0.00 | -
Model | GIS
GIS | Unknown
- | -
Unknown | 467.478
463.980 | 466.503
463.652 | | 3058
3057
3236 | EAS6F2P3058
EAS6F2P3057
EAS6F2P3236 | EAS6F2092
EAS6F2091
EAS6F2044 | 525.93
0.00
0.00 | EAS6F2091
EAS6F2090
EAS6F2043 | 0.00
522.78
519.60 | 525.93
0.00
0.00 | 0.00
522.78
519.60 | GIS
-
- | -
GIS
GIS | -
Unknown
Unknown | Unknown
-
- | 525.930
524.130
520.379 | 525.463
522.780
519.600 | | 3259
3221
230 | EAS6F1P3259
EAS6F1P3221
ACS4C2P0230 | EAS6F1035
EAS6F1034
ACS4C2078 | 0.00
0.00
0.00 | EAS6F1033
EAS6F1033
ACS4C2077 | 516.35
516.35
434.50 | 0.00
0.00
0.00 | 516.35
516.35
434.50 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 516.702
516.648
434.853 | 516.350
516.350
434.500 | | 798
2887 | STS2F4P0798
PPS5G1P2887 | STS2F4015
TICK2366 | 0.00
0.00 | STS2F4014
PPS5G1020 | 491.72
523.08 | 0.00
0.00 | 491.72
523.08 | - | GIS
GIS | Unknown
Unknown | - | 492.511
523.570 | 491.720
523.080 | | 3957
1756
5706 | JLS6D1P3957
STS4E4P1756
ECS8D2P5706 | JLS6D1085
STS4E3056
TICK5198 | 0.00
0.00
0.00 | JLS6D1084
STS4E4T001
ECS8D2060 | 431.88
0.00
468.60 | 0.00
0.00
0.00 | 431.88
438.41
468.60 | - | GIS
Model
GIS | Unknown
Unknown
Unknown | - | 432.329
438.978
468.755 | 431.880
438.410
468.600 | | 1539
7449 | PPS4G1TP1539
STS2H3P7449 | TICK1033
STS2H3057B | 0.00
0.00 | PPS4H1001
STS2H3057 | 522.49
529.00 | 0.00
0.00 | 522.49
529.00 | - | GIS
GIS | Unknown
Unknown | - | 522.561
529.330 | 522.490
529.000 | | 942
7448
7450 | STS2H3P0942
STS2H3P7448
STS2H3P7450 | STS2H3057A
STS2H3056
STS2H3045A | 0.00
523.08
0.00 | STS2H3052
STS2H3057A
STS2H3045 | 522.65
0.00
530.97 | 0.00
523.08
0.00 | 522.65
0.00
530.97 | GIS
- | GIS
-
GIS | Unknown
-
Unknown | -
Unknown
- | 523.171
523.080
531.515 | 522.650
522.753
530.970 | | 7451
7453
1554 | STS2H3P7451
STS2H3P7453
STS3G3P1554 | STS2H3048A
STS2H3034A
STS3G3050 | 0.00
0.00
0.00 | STS2H3048
STS2H3034
STS3G3048 | 529.64
521.37
0.00 | 0.00
0.00
513.47 | 529.64
521.37
0.00 | -
Interpolate | GIS
GIS | Unknown
Unknown
Need Confirmation | -
-
Unknown | 530.191
521.434
513.470 | 529.640
521.370
510.757 | | 1531
3115 | STS3G3P1531
EAS6F1P3115 | STS3G3048
EAS6F1022 | 0.00
518.00 | STS3G3060
EAS6F1021 | 508.08
0.00 | 0.00
518.00 | 508.08
0.00 | -
GIS | GIS
- | Unknown
- | -
Unknown | 509.162
518.000 | 508.080
516.760 | | 3162
7638
6044 | EAS6F1P3162
JLS6D1P7638
JLS6D1P6044 | EAS6F1021
JLS6D1001C
JLS6D1001 | 0.00
0.00
402.15 | EAS6F1020
JLS6D1001B
JLS6D1001C | 510.88
401.48
0.00 | 0.00
0.00
402.15 | 510.88
401.48
0.00 | -
-
GIS | GIS
GIS
- | Unknown
Unknown
- | -
-
Unknown | 511.836
401.595
402.150 | 510.880
401.480
401.641 | | 5937
1004
7640 | DTS6E2TP5937
STS3G1TP1004
STS3G2P7640 | DTS5E3T023
TICK501
STS3G2064 | 478.00
0.00
0.00 | DTS5E3T023B
STS3G1T005
STS3G2037 | 0.00
494.56
0.00 | 478.00
0.00
0.00 | 0.00
494.56
515.34 | GIS
-
- | -
GIS
Model | -
Unknown
Unknown | Unknown
-
- | 478.000
494.649
515.369 | 478.000
494.560
515.142 | | 7040 | 0133GZP764U | 313302004 | 0.00 | 313362037 | 0.00 | 0.00 | 313.34 | | MODE | UNKNOWN | | 515.369
515.369 | 010.142 | | Column | | | | | Tab | le 1. List of | | | vert Elevation by | • | | | | |
---|--------------|----------------------------|--------------------------|----------------|--------------------------|------------------|----------------|------------------|-------------------|--------------|--------------------|-------------------|--------------------|--------------------| | Column | | | | | Mh Downstream | | | | Sou | ırce | St | atus | | | | April | 7639 | STS3G2P7639 | STS3G2050 | 0.00 | STS3G2072 | 0.00 | 517.59 | 0.00 | Model | - | | Unknown | 517.590 | 517.222 | | No. | 3565 | JLS6D2P3565 | JLS6D2064 | 0.00 | JLS6D2063 | 436.36 | 0.00 | 436.36 | - | GIS | Unknown | - | 436.835 | 436.360 | | 1. | 3615 | EAS6F2P3615 | EAS6F2024 | 0.00 | EAS6F2023 | 532.20 | 0.00 | 532.20 | | GIS | Unknown | - | 532.733 | 532.200 | | March Marc | 3397
803 | EAS6F2P3397 | EAS6F2068
STS3F2T013 | 536.34
0.00 | EAS6F2066A
STS3F2T012 | 0.00 | 536.34
0.00 | 0.00
487.13 | GIS | -
Model | - | Unknown
- | 536.340
487.552 | 535.310
487.130 | | 100 | 7495 | WLS4B3P7495 | WY7281 | 339.10 | ECLS | 0.00 | 339.10 | 0.00 | GIS | - | - | | 339.100 | 339.000 | | 100 | 7529 | JLS5C2P7529 | JLS5C2081
JLS5C2078 | 0.00 | JLS5C2077 | 392.77 | 0.00 | 392.77
0.00 | - | GIS | Unknown | | 393.645 | 392.774 | | 1. | 2143 | JLS5D1P2143 | JLS5D1055 | 0.00 | JLS5D1054 | 428.23 | 0.00 | 428.23 | - | GIS | Unknown | • | 428.543 | 428.230 | | 100 | 7556 | JLS5D1P7556 | JLS5D1064A | 0.00 | JLS5D1064 | 432.50 | 0.00 | 432.50 | - | GIS | | - | 432.764 | 432.500 | | 100 | 2095 | JLS5D1P2095 | JLS5D1110 | 0.00 | JLS5D1109 | 431.82 | 0.00 | 431.82 | - | GIS | Unknown | - | 432.603 | 431.820 | | Column | 7565 | STS3G2P7565 | STS3G2038A
ECS7D4071 | 0.00 | STS3G2038
ECS7D4070 | 517.80 | 0.00 | 517.80 | - | GIS | Unknown
Unknown | - | 518.628 | 517.800
483.900 | | 1.00 | 3580 | JLS5D3P3580 | JLS5D3026 | 0.00 | JLS5D3025 | 427.66 | 0.00 | 427.66 | - | GIS | Unknown | - | 428.457 | 427.660 | | 1. | 3587
3585 | JLS5D3P3587
JLS5D3P3585 | JLS5D3029A
JLS5D3028A | 0.00 | JLS5D3029
JLS5D3028 | 435.70
433.47 | 0.00 | 435.70
433.47 | - | GIS | Unknown | | 436.271
434.200 | 435.700
433.470 | | 100 1.00 | 3041 | JLS5D3P3041 | JLS5D3060 | 0.00 | JLS5D3057 | 0.00 | 0.00 | 417.26 | - | | -
Unknown | - | 418.134 | 417.360 | | Column | 3583
7614 | JLS5D3P3583
JLS5D2P7614 | JLS5D3024A
JLS5D2108 | 0.00
439.65 | JLS5D3024B
JLS5D2092A | 427.66
0.00 | 0.00
439.65 | 427.66
0.00 | - | GIS
- | • | - | 428.255
439.650 |
427.660
438.280 | | 1. 1. 1. 1. 1. 1. 1. 1. | 7383 | DTS6E2P7383 | DTS6E2058 | 0.00 | DTS6E2055 | 496.00 | 0.00 | 496.00 | - | GIS | Unknown | - | 497.270 | 496.000 | | Column | 3739
3637 | DTS6E2P3739
DTS6E2P3637 | DTS6E2057
DTS6E2056 | 0.00
0.00 | DTS6E2056
DTS6E2051A | 0.00
0.00 | 0.00
492.86 | 492.86
0.00 | - | Model
- | Unknown
- | - | 494.115
497.860 | 492.860
495.027 | | 1.00 | 4418 | ECS6D4P4418 | ECS6D4092 | 0.00 | ECS6D4091 | 442.20 | 0.00 | 442.20 | - | GIS | Unknown | - | 442.473 | 442.200 | | Column | 2175
2233 | JLS5D2P2175
JLS5D2P2233 | JLS5D2073
JLS5D2068 | 0.00
0.00 | JLS5D2070
JLS5D2067 | 438.67
437.59 | 0.00
0.00 | 438.67
437.59 | - | GIS
GIS | Unknown
Unknown | - | 439.410
438.194 | 438.670
437.590 | | Column | 4898 | RHS7D3P4898 | RHS7D3059 | 0.00 | RHS7D3058 | 424.56 | 0.00 | 424.56 | - | GIS | Unknown | - | 424.838 | 424.560 | | Section Control Cont | 3129
2734 | DTS5E3P3129
DTS6E1P2734 | DTS5E3082
DTS6E1035A | 0.00
0.00 | DTS5E3081
DTS6E1035 | 0.00
465.50 | 0.00
0.00 | 476.95
465.50 | - | Model
GIS | Unknown
Unknown | - | 478.023
465.996 | 476.950
465.500 | | Section Content Cont | 2990 | DTS5E3P2990 | DTS5E3051A | 504.93 | DTS5E3050 | 0.00 | 504.93 | 0.00 | | - | - | | 504.930 | 504.057 | | Section Column | 2934
2510 | DTS5E3P2934
PPS5F1P2510 | DTS5E3052
PPS5F1047 | 0.00 | DTS5E3051
PPS5F1046 | 0.00
563.50 | 0.00 | 505.10
563.50 | - | Model
GIS | Unknown
Unknown | - | 506.830
564.409 | 505.263
563.500 | | The content | 224 | ACS4C2P0224 | ACS4C2095
ACS4C2094 | 0.00 | ACS4C2068 | 426.43 | 0.00 | 426.43 | | GIS | Unknown | | 426.489 | 426.430 | | The part | 7669
7670 | STS3G2P7669
STS3G2P7670 | TICK7439 | 0.00 | STS3G2057A
STS3G2057A | 522.02 | 0.00 | 522.02
522.02 | - | GIS
GIS | Unknown | - | 522.128 | 522.020 | | March Continue C | 7672 | STS3G2P7672 | TICK7442 | 0.00 | STS3G2057C | 523.52 | 0.00 | 523.52 | | GIS | Unknown | | 523.631 | 523.520 | | Section Sect | 3604 | DTS6E2P3604 | DTS6E2027A | 0.00 | DTS6E2027 | 481.29 | 0.00 | 481.29 | | GIS
GIS | Unknown | - | 481.577 | 481.290 | | Bellet B | 4493 | DTS6E4P4493 | DTS6E4035 | 496.74 | DTS6E4030 | 0.00 | 496.74 | 0.00 | GIS | - | - | | 496.740 | 495.425 | | Accordance Acc | 3621 | EAS6F1P3621 | EAS6F1081 | 0.00 | EAS6F1080R | 516.78 | 0.00 | 516.78 | - | GIS | | - | 517.106 | 516.780 | | March Marc | 4260
4295 | EAS6F4P4260
EAS6F4P4295 | EAS6F4016
EAS6F4018 | 0.00 | EAS6F4015
EAS6F4017 | 528.80
531.29 | 0.00
0.00 | 528.80
531.29 | - | GIS
GIS | | | 530.109
532.135 | 528.800
531.290 | | Color | 3567 | PPS6G2P3567 | PPS6G2028 | 557.51 | PPS6G2027 | 0.00 | 557.51 | 0.00 | GIS | - | - | -
Unknown | 557.510 | 557.051 | | October Control Cont | 4019
4151 | DTS6E2P4019
DTS6F3P4151 | DTS6E2046
DTS6F3003 | 0.00 | DTS6E2045
DTS6F3002 | 498.82
500.50 | 0.00
0.00 | 498.82
500.50 | - | GIS
GIS | Unknown
Unknown | | 499.479
501.708 | 498.820
500.500 | | SAMP | 4052 | DTS6E2P4052 | TICK3564 | 0.00 | DTS6E2041 | 494.10 | 0.00 | 494.10 | - | GIS | Unknown | | 494.351 | 494.100 | | 1.669/2000 1.669/2000 1.669/2007 201.45 100 201.45 100 201.45 100 201.45 100 201.45 100 201.45 201. | 3390
7418 | EAS6F2P3390
EAS6F2P7418 | EAS6F2086
EAS6F2084A | 0.00 | EAS6F2083
EAS6F2084 | 533.60
534.36 | 0.00 | 533.60
534.36 | - | GIS
GIS | Unknown | - | 534.101
535.018 | 533.600
534.360 | | | 3085 | EAS6F2P3085 | EAS6F2078 | 0.00 | EAS6F2077 | 555.14 | 0.00 | 555.14 | - | GIS | | - | 555.327 | 555.140 | | 683 ASSEPTION ASSESSMENT ABOUT | 3348
4448 | PPS6G1P3348
EAS6F4P4448 | PPS6G1054A
NO | 0.00
0.00 | PPS6G1054
EAS6F4078 | 533.77
546.16 | 0.00
0.00 | 533.77
546.16 | - | GIS | Unknown | - | 533.857
546.621 | 533.770
546.160 | | APPRILIA | 4563 | EAS6F4P4563 | EAS6F4036 | 0.00 | EAS6F4035 | 539.04 | 0.00 | 539.04 | - | GIS | | - | 539.509 | 539.040 | | Math Proprieto Math Proprieto Math | 4567
4895 | EAS6F4P4567
ECS7D2P4895 | EAS6F4091P
ECS7D2063 | 0.00
0.00 | EAS6F4091
ECS7D2061 | 558.68
0.00 | 0.00
0.00 | 558.68
442.03 | - | GIS
Model | Unknown
Unknown | | 558.758
442.815 | 558.680
442.030 | | ## Compressor Compresso | 4884 | ECS7D2P4884 | ECS7D2047 | 448.55 | ECS7D2046 | 0.00 | 448.55 | 0.00 | GIS | -
GIS | - | | 448.550 | 447.833 | | 6015 | 4850 | ECS7D2P4850 | ECS7D2051 | 0.00 | ECS7D2050 | 447.85 | 0.00 | 447.85 | | GIS
GIS | Unknown | - | 448.347 | 447.850 | | Solid CCSQU-SHOED CCSQU- | 5315 | ECS7D3TP5315 | TICK4806 | 0.00 | ECS7D3T010 | 438.24 | 0.00 | 438.24 | | GIS | Unknown | | 438.362 | 438.240 | | ### CSCPDF4469 | 5648
5609 | ECS8D2P5648
ECS8D2P5609 | ECS8D2046
ECS8D2040 | 0.00 | ECS8D2045
ECS8D2039 | 458.48
464.39 | 0.00
0.00 | 458.48
464.39 | - | GIS
GIS | Unknown
Unknown | - | 458.804
464.819 | 458.480
464.390 | | March DTSPT-Frage DTSPT-SQU D.00 | 4899
4841 | ECS7D2P4899
ECS7D2P4841 | ECS7D2106
ECS7D2098A | 0.00
0.00 | ECS7D2105
ECS7D2097 | 470.40
469.00 | 0.00
0.00 | 470.40
469.00 | - | GIS
GIS | Unknown
Unknown | - | 470.741
470.319 | 470.400
469.000 | | ## Commons Com | 4689
7485 | ACS5C4P7485 | ACS5C4003 | 366.18 | ACS5C4044 | 0.00 | 366.18 | 0.00 | GIS | Model
- | | Unknown | 366.180 | 366.130 | | Peter ACS-01197815 ACS-011140 0.00 | 6785
7807 | ACS5C4P6785
ACS4D1P7807 | ACS5C4044
ACS4D1148 | 0.00
0.00 | ACS5C4002
ACS4D1141 | 363.78
0.00 | 0.00
0.00 | 363.78
435.76 | - | GIS | | - | 363.996
436.154 | 363.780
435.760 | | 7912 ACS-0179762 ACS-0179762 ACS-0179763 O.00 ACS-017153 ACS-0171 | 7815 | ACS4D1P7815
ACS4D1P7817 | ACS4D1140
ACS4D1170 | 0.00 | ACS4D1130 | 0.00 | 0.00 | 434.89 | - | | | Unknown
-
- | 435.072 | 434.890
437.802 | | 4400 RHSSEDSP440 RHSSEDSSZEB 0.00 RHSSEDSZEB 417.90 0.00 0.00 | 7812
7826 | ACS4D1P7812
ACS4D1P7826 | ACS4D1152
ACS4D1129 | 0.00 | ACS4D1151
ACS4D1126 | 0.00 | 440.38
0.00 | 0.00
427.64 | Model
- | - | - | - | 437.802
427.803 | 437.465
427.640 | | 5055 RHSBIPP0005 RHSBIP1005 0.00 RHSBIP1005 416.83 0.00 416.83 | 4406
4412 | RHS6D3P4406
RHS6D3P4412 | RHS6D3026B
RHS6D3026A | 0.00 | RHS6D3026
RHS6D3026 | 417.90
417.90 | 0.00 | 417.90
417.90 | - | GIS | | - | 418.101
418.080 | 417.900
417.900 | | 4943 RH\$70394493 RH\$703040 0.00 RH\$703039 410.73 0.00 410.73 - GIS Unknown - 411.279 410.730 2921 PP\$564P2921 PP\$564P2921 ST\$263026 50.00 ST\$2630606 552.53 0.00 552.53 - GIS Unknown - 553.655
553.655 553. | 5055
5428 | RHS8D1P5055
RHS7D3P5428 | RHS8D1055
TICK4914 | 0.00
0.00 | RHS8D1054
RHS7D3093 | 416.83
424.74 | 0.00
0.00 | 416.83
424.74 | | GIS
GIS | Unknown
Unknown | - | 417.620
424.825 | 416.830
424.740 | | 5971 STS2G99F971 STS2G30268 507.00 STS2G3026A 0.00 STS2G31005 506.36 0.00 506.36 | 4943
2921 | RHS7D3P4943
PPS5G4P2921 | RHS7D3040
PPS5G4068 | 0.00
0.00 | RHS7D3039
PPS5G4067 | 410.73
552.53 | 0.00
0.00 | 410.73
552.53 | - | GIS
GIS | Unknown | - | 411.279
553.565 | 410.730
552.530 | | 1749 | 7628 | STS2G3P7628 | STS2G3026A | 0.00 | STS3G1T005 | 506.36 | 0.00 | 506.36 | GIS
- | GIS | | Unknown
-
- | 506.465 | 506.360 | | 1409 | 1749
1245 | JLS5C2P1749
STS3G3P1245 | JLS5C2023A
STS3G3089 | 0.00
0.00 | JLS5C2023
STS3G3084 | 407.51
0.00 | 0.00
0.00 | 407.51
503.80 | | GIS
Model | Unknown
Unknown | | 407.583
504.185 | 407.510
503.800 | | 3199 EASBF27375 STS3F4124 506.30 STS374124A 0.00 506.30 0.00 GIS - - Unknown 506.300 505.350 | 1409 | STS3G3P1409 | STS3G3017 | 0.00 | STS3G3016 | 504.43 | 0.00 | 504.43 | | GIS | Unknown | - | 504.658 | 504.430 | | F5744 ECS8E1P5744 TICK5235 0.00 ECS8E1100 529.79 0.00 529.79 . GIS Unknown . 529.866 529.790 | 7375
3199 | STS3F4P7375
EAS6F2P3199 | STS3F4124
EAS6F2058 | 506.30
0.00 | STS374124A
EAS6F2056 | 0.00
527.44 | 506.30
0.00 | 0.00
527.44 | - | -
GIS | -
Unknown | Unknown
- | 506.300
528.096 | 505.350
527.440 | | 133 ACS4C2P0133 ACS4C2P014 ACS4C2P013 ACS4C2024A ACS4C2P3 423.11 ACS4C2P7683 ACS4C2P7683 ACS4C2P7683 ACS4C2P7683 ACS4C2P4A A | 5744 | ECS8E1P5744 | TICK5235 | 0.00 | ECS8E1100
ACS4C2026 | 529.79 | 0.00 | 529.79 | - | GIS | Unknown | | 529.866 | 529.790 | | 2983 PPS5G4P2983 PPS5G4009 0.00 PPS5G4008 542.52 0.00 542.52 - GIS Unknown - 542.682 542.520 3490 PPS6H1P3490 PPS6H1D6A 0.00 PPS6H2F1B4890 0.00 JLS6D2058 431.75 0.00 585.78 - GIS Unknown - 431.954 431.750 3005 JLS6D293005 JLS6D2015 0.00 JLS6D2014 436.09 0.00 436.09 - GIS Unknown - 436.389 436.090 1315 STS3F4P1315 STS3F4014 495.73 STS3F4012 491.07 0.00 491.07 - GIS Unknown - 495.73 495.142 1314 STS3F4P1316 STS3F4013 0.00 STS3F4012 491.07 0.00 491.07 - GIS Unknown - 495.73 495.142 5523 ECS7E3P5523 ECS7E3123 0.00 ECS7E3121 526.05 0.00 556.05 - GIS< | 133
7683 | ACS4C2P0133
ACS4C2P7683 | ACS4C2024A
ACS4C2024 | 0.00
435.43 | ACS4C2023
ACS4C2024A | 423.11
0.00 | 0.00
435.43 | 423.11
0.00 | -
GIS | GIS
- | Unknown
- | | 424.049
435.430 | 423.110
435.100 | | 3000 JLS6D2P3000 JLS6D2D59 0.00 JLS6D2D58 431.75 0.00 431.75 - GIS Unknown - 431.954 431.750 | 2983
3490 | PPS5G4P2983
PPS6H1P3490 | PPS5G4009
PPS6H1016A | 0.00
0.00 | PPS5G4008
PPS6H1016 | 542.52
585.78 | 0.00
0.00 | 542.52
585.78 | | GIS
GIS | Unknown
Unknown | | 542.682
585.854 | 542.520
585.780 | | 1314 STS3F4P1314 STS3F4D13 0.00 STS3F4D12 491.07 0.00 491.07 - GIS Unknown - 491.327 491.070 | 3005 | JLS6D2P3005 | JLS6D2015 | 0.00 | JLS6D2014 | 436.09 | 0.00 | 436.09 | - | GIS | | - | 436.389 | 436.090 | | 4506 DTS6E4P4506 DTS6E4P33 0.00 DTS6E4066 0.00 0.00 505.10 - Model Unknown - 506.444 505.100 4517 DTS6E4P4517 DTS6E4087 0.00 DTS6E4085 0.00 521.25 0.00 Model - - Unknown 521.250 520.387 4516 DTS6E4P4516 DTS6E4985 0.00 DTS6E4084 518.93 0.00 518.93 - GIS Unknown - 519.063 518.930 6051 PPSSG1P6051 PPSSG1043 0.00 PPSSF2T004 516.80 0.00 516.80 - GIS Unknown - 517.075 516.800 2537 DTS5E2P2537 DTSSE2D54 0.00 DTS5E2053 511.80 0.00 511.80 - GIS Unknown - 512.182 511.800 2187 DTSSE2P2187 DTS5E2D52 0.00 DTS5E2053 513.47 0.00 568.00 - GIS Unknown - | 1314
5523 | STS3F4P1314
ECS7E3P5523 | STS3F4013
ECS7E3123 | 0.00
0.00 | STS3F4012
ECS7E3121 | 491.07
526.05 | 0.00
0.00 | 491.07
526.05 | - | | | - | 491.327
526.360 | 491.070
526.050 | | 4516 DTS6E4P4516 DTS6E4085 0.00 DTS6E4084 518.93 0.00 518.93 - GIS Unknown - 519.063 518.930 6051 PPS5G1P6051 PPS5G1043 0.00 PPS5F2T004 516.80 0.00 516.80 - GIS Unknown - 517.075 516.800 2537 DTS5E2P537 DTS5E2D54 0.00 DTS5E2D53 511.80 0.00 511.80 - GIS Unknown - 512.182 511.800 2187 DTS5E2P187 DTS5E2D52 0.00 DTS5E2051 568.00 0.00 568.00 - GIS Unknown - 568.882 568.000 5276 ECS7E3944 0.00 ECS7E3043 513.47 0.00 513.47 - GIS Unknown - 514.305 514.307 7677 PPS5G4P7677 STUB7447 0.00 PPS5G4065 547.92 0.00 547.92 - GIS Unknown - 547.941 <t< td=""><td>4506</td><td>DTS6E4P4506</td><td>DTS6E4073</td><td>0.00</td><td>DTS6E4066</td><td>0.00</td><td>0.00</td><td>505.10</td><td>-</td><td>-
Model</td><td></td><td>-</td><td>506.444</td><td>505.100</td></t<> | 4506 | DTS6E4P4506 | DTS6E4073 | 0.00 | DTS6E4066 | 0.00 | 0.00 | 505.10 | - | -
Model | | - | 506.444 | 505.100 | | 2187 DTS5E2P2187 DTS5E2052 0.00 DTS5E2D51 568.00 0.00 568.00 - GIS Unknown - 568.882 568.000 5276 ECS7E3P5276 ECS7E3044 0.00 ECS7E3043 513.47 0.00 513.47 - GIS Unknown - 514.305 513.470 7677 PPS5G4P7677 STUB7447 0.00 PPS5G4065 547.92 0.00 547.92 - GIS Unknown - 547.941 547.920 | 4516
6051 | DTS6E4P4516
PPS5G1P6051 | DTS6E4085
PPS5G1043 | 0.00
0.00 | DTS6E4084
PPS5F2T004 | 518.93
516.80 | 0.00 | 518.93
516.80 | - | GIS
GIS | Unknown
Unknown | - | 519.063
517.075 | 518.930
516.800 | | 7677 PPS5G4P7677 STUB7447 0.00 PPS5G4065 547.92 0.00 547.92 - GIS Unknown - 547.941 547.920 | 2187 | DTS5E2P2187 | DTS5E2052 | 0.00 | DTS5E2051 | 568.00 | 0.00 | 568.00 | | GIS | Unknown | | 568.882 | 568.000 | | | 7677 | PPS5G4P7677 | STUB7447 | 0.00 | PPS5G4065 | 547.92 | 0.00 | 547.92 | - | GIS | Unknown | - | 547.941 | 547.920 | | | | CIC let | ormation | Tab | le 1. List of | | | vert Elevation by | | C+ | Nuo | Drox | | |----------------------|---|--|-------------------------------|--|---------------------------------------|-------------------------------|----------------------------|-------------------------|-----------------------------|-----------------------------------|-------------------------|-------------------------------|---------------------------------| | ID | PipeID | MhUpstream
ID | Upstream Invert Elevation, ft | Mh Downstream
ID | Downstream
Invert
Elevation, ft | Upstream Invert Elevation, ft | Downstream Invert | Sou Upstream Invert | Downstream Invert | Upstream Invert | atus Downstream Invert | Upstream Invert Elevation, ft | Downstream Invert Elevation, ft | | 3033
5812 | PPS5G4P3033
ECS8E3P5812 | PPS5G4070
ECS8E3039 | 0.00 | PPS5G4069
ECS8E3038 | 554.21
510.04 | 0.00
0.00 | 554.21
510.04 | | GIS
GIS | Unknown
Unknown | - | 558.540
510.519 | 554.210
510.040 | | 2897
3346
3526 | PPS5G4P2897
DTS6E1P3346
DTS6E2P3526 | PPS5G4052
TICK2860
DTS6E2065R | 0.00
0.00
0.00 | PPS5G4051
DTS6E1010
DTS6E2064 | 547.97
463.08
0.00 | 0.00
0.00
489.53 | 547.97
463.08
0.00 | -
-
Model | GIS
GIS | Unknown
Unknown
- | -
-
Unknown | 548.816
463.173
493.888 | 547.970
463.080
493.335 | | 7745
7744
3546 | EAS6F1P7745
EAS6F1P7744
EAS6F1P3546 | TICK7514
EAS6F1148R
EAS6F1070 | 0.00
509.72
0.00 | EAS6F1065R
TICK7514
EAS6F1069 | 508.71
0.00
518.90 | 0.00
509.72
0.00 | 508.71
0.00
518.90 | -
GIS
- | GIS
-
GIS | Unknown
-
Unknown | -
Unknown
- | 509.128
509.720
519.100 | 508.710
509.700
518.900 | | 7761
3315 | EAS6F1P7761
EAS6F1P3315 | EAS6F1074
TICK2797 | 0.00
0.00 | EAS6F1072R
EAS6F1049R | 522.14
513.75 | 0.00
0.00 | 522.14
513.75 | - | GIS
GIS | Unknown
Unknown | - | 522.419
514.009 | 522.140
513.750 | | 3275
7067
1888 | EAS6F1P3275
EAS6F2P7067
PPS5I1P1888 | TICK2797
EAS6F2098
TICK1375 | 0.00
0.00
0.00 | EAS6F1030
EAS6F2013
PPS5I1017 | 512.90
527.46
604.03 | 0.00
0.00
0.00 | 512.90
527.46
604.03 | - | GIS
GIS | Unknown
Unknown
Unknown | - | 513.505
527.500
604.111 | 512.900
527.460
604.030 | | 1804
7829
6037 | PPS5I1P1804
ACS4D1P7829
RHS8D3P6037 | PPS5I1019
ACS4D1127
RHS8D3012A | 0.00
0.00
0.00 | PPS5I1018
ACS4D1126
RHS8D3012R | 588.09
427.74
418.20 | 0.00
0.00
0.00 | 588.09
427.74
418.20 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 589.334
428.314
418.447 |
588.090
427.740
418.200 | | 25
7051 | RHS8D3P0025
PPS4G3TP7051 | RHS8D3011A
PPS4G3T001 | 0.00
0.00 | RHS8D3103
PPS5F2T002 | 419.49
508.73 | 0.00
0.00 | 419.49
508.73 | - | GIS
GIS | Unknown
Unknown | - | 419.661
508.859 | 419.490
508.730 | | 2825
1231
807 | DTS6E1P2825
STS3G3P1231
STS2G4P0807 | STUB2326
STS3G3065
STS2G4028 | 0.00
0.00
0.00 | DTS6E1012
STS3G3064
STS2G4027 | 451.49
0.00
516.20 | 0.00
0.00
0.00 | 451.49
499.31
516.20 | - | GIS
Model
GIS | Unknown
Unknown
Unknown | - | 451.721
500.132
516.701 | 451.490
499.310
516.200 | | 3196
6171 | DTS5E3P3196
PPS4G3P6171
ECS7E2P7372 | DTS5E3006
PPS4G3057 | 475.90
0.00
0.00 | DTS5E3005
PPS4G3056 | 0.00
517.50
0.00 | 475.90
0.00
0.00 | 0.00
517.50
510.80 | GIS
- | -
GIS | -
Unknown
Unknown | Unknown
- | 475.900
518.655 | 474.637
517.500
510.798 | | 7372
4032
5146 | DTS6E2P4032
ECS7E3P5146 | DTS6E2012
ECS7E3015 | 0.00 | DTS6E2011
ECS7E3013 | 472.37
497.90 | 0.00 | 472.37
497.90 | - | Model
GIS
GIS | Unknown
Unknown
Unknown | - | 512.201
472.913
498.424 | 472.370
497.900 | | 3881
3838
2216 | PPS6G2P3881
PPS6G2P3838
JLS5D1P2216 | PPS6G2065
PPS6G2053A
JLS5D1063 | 572.28
0.00
0.00 | PPS6G2064
PPS6G2053
JLS5D1062 | 0.00
563.44
0.00 | 572.28
0.00
0.00 | 0.00
563.44
430.89 | GIS
-
- | -
GIS
Model | -
Unknown
Unknown | Unknown
-
- | 572.280
563.566
431.443 | 571.660
563.440
430.890 | | 5203
5204 | ECS7E3P5203
ECS7E4P5204 | ECS7E3057
ECS7E4065 | 0.00 | ECS7E3056
ECS7E4031 | 493.22
526.36 | 0.00 | 493.22
526.36 | | GIS
GIS | Unknown
Unknown | - | 494.147
526.825 | 493.220
526.360 | | 6100
6101
1471 | STS4F3TP6100
STS4F3TP6101
STS3G3P1471 | TICK5968
TICK5964
STS3G3046A | 0.00
0.00
0.00 | STS4F3T007
STS4F3T005
STS3G3046 | 460.79
458.39
509.60 | 0.00
0.00
0.00 | 460.79
458.39
509.60 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 460.854
458.456
509.794 | 460.790
458.390
509.600 | | 955
4584
7069 | STS2H4P0955
DTS7F1P4584
EAS6F4P7069 | STS2H4016
DTS7F1039
EAS6F4116 | 0.00
0.00
0.00 | STS2H4015
DTS7F1038
EAS6F2022 | 534.58
507.44
538.30 | 0.00
0.00
0.00 | 534.58
507.44
538.30 | | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 535.795
508.098
538.637 | 534.580
507.440
538.300 | | 765
4034 | STS2G4P0765
DTS6E2P4034 | STS2G4019
PRIVATE3492 | 0.00
0.00 | STS2G4018
DTS6E2062 | 508.75
0.00 | 0.00
0.00 | 508.75
498.76 | - | GIS
Model | Unknown
Unknown | - | 509.002
499.347 | 508.750
498.760 | | 647
2090
669 | STS2G2P0647
JLS5D2P2090
STS2G2P0669 | STS2G2061A
PRIVATE1548
STS2G2043 | 0.00
0.00
0.00 | STS2G2061
JLS5D2115
STS2G2034 | 517.86
440.80
509.30 | 0.00
0.00
0.00 | 517.86
440.80
509.30 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 518.081
441.220
509.637 | 517.860
440.800
509.300 | | 671
675
678 | STS2G2P0671
STS2G2P0675
STS2G2P0678 | STS2G2044
STS2G2041
STS2G2042 | 0.00
0.00
0.00 | STS2G2035
STS2G2040 | 510.50
516.66
516.66 | 0.00
0.00
0.00 | 510.50
516.66
516.66 | | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 510.840
517.238 | 510.500
516.660
516.660 | | 2426
4404 | DTS5E2P2426
DTS6E4P4404 | DTS5E2038
DTS6E4030 | 0.00
0.00 | STS2G2040
DTS5E2037
DTS6E4028 | 491.61
488.13 | 0.00 | 491.61
488.13 | - | GIS
GIS | Unknown
Unknown | - | 516.833
491.810
489.573 | 491.610
488.130 | | 3923
4082
5273 | JLS6D1P3923
PPS6G2P4082
ECS7E4P5273 | JLS6D1077
PPS6G2061
ECS7E4033 | 0.00
570.72
0.00 | JLS6D1076
PPS6G2060
ECS7E4032 | 420.80
0.00
527.80 | 0.00
570.72
0.00 | 420.80
0.00
527.80 | -
GIS
- | GIS
-
GIS | Unknown
-
Unknown | -
Unknown
- | 421.638
570.720
528.087 | 420.800
569.833
527.800 | | 4441
1192 | DTS6E4P4441
STS3F4P1192 | DTS6E4104
STS3F4026 | 0.00
0.00 | DTS6E4102
STS3F4025 | 0.00
489.69 | 513.91
0.00 | 0.00
489.69 | Model
- | -
GIS | -
Unknown | Unknown
- | 513.910
490.103 | 512.783
489.690 | | 1194
4392
2800 | STS3F4P1194
DTS6E4P4392
PPS5H1P2800 | STS3F4031
DTS6E4064
PPS5H1049 | 490.94
0.00
557.64 | STS3F4026
DTS6E4063
PPS5H1048 | 0.00
501.20
0.00 | 490.94
0.00
557.64 | 0.00
501.20
0.00 | GIS
-
GIS | GIS
- | -
Unknown
- | Unknown
-
Unknown | 490.940
501.788
557.640 | 490.392
501.200
557.176 | | 4039
5121
2731 | DTS6E2P4039
ECS7E1P5121
DTS5E3P2731 | DTS6E2075
ECS7E1057
DTS5E3071 | 489.43
0.00
0.00 | DTS6E2073
ECS7E1056
DTS5E3070 | 0.00
500.70
474.87 | 489.43
0.00
0.00 | 0.00
500.70
474.87 | GIS
- | -
GIS
GIS | -
Unknown
Unknown | Unknown
- | 489.430
501.183
475.587 | 488.160
500.700
474.870 | | 4733
143 | DTS7F1P4733
ACS4C4P0143 | DTS7F1022
ACS4C4052 | 0.00 | DTS7F1021
ACS4C4031 | 513.90
380.93 | 0.00 | 513.90
380.93 | - | GIS
GIS | Unknown
Unknown | - | 514.441
382.271 | 513.900
380.930 | | 293
294
295 | ACS4C2P0293
ACS4C3TP0294
ACS4C2P0295 | STUB5576
STUB5574
STUB5578 | 0.00
0.00
0.00 | ACS4C3T016
ACS4C3T016
ACS4C3T016 | 384.00
383.01
384.00 | 0.00
0.00
0.00 | 384.00
383.01
384.00 | - | GIS
GIS | Unknown
Unknown
Unknown | - | 384.043
383.031
384.045 | 384.000
383.010
384.000 | | 296
2168
5355 | PPS4H4P0296
DTS5E2P2168 | PPS4H4052
DTS5E2018
ECS7E3089 | 0.00
0.00
0.00 | PPS4H4042A
DTS5E2017 | 578.06
510.34
517.50 | 0.00
0.00
0.00 | 578.06
510.34
517.50 | - | GIS
GIS
GIS | Unknown
Unknown | - | 578.195
510.870 | 578.060
510.340
517.500 | | 2252
2767 | ECS7E3P5355
PPS5F1P2252
JLS5D2P2767 | PPS5F1035A
JLS5D2078 | 0.00
0.00 | PPS5F1035
JLS5D2077 | 600.78
448.17 | 0.00
0.00 | 600.78
448.17 | - | GIS
GIS | Unknown
Unknown
Unknown | - | 518.150
600.863
448.664 | 600.780
448.170 | | 3309
5771
5640 | DTS6E1P3309
ECS8E3P5771
RHS8D1P5640 | DTS6E1059
ECS8E3056
RHS8D1126A | 0.00
0.00
0.00 | DTS6E1058
ECS8E3055
RHS8D1125 | 466.06
512.00
425.48 | 0.00
0.00
0.00 | 466.06
512.00
425.48 | • | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 467.024
512.539
426.166 | 466.060
512.000
425.480 | | 2971
447 | DTS5E3P2971
PPS5G1P0447 | DTS5E3003
PPS5G1017B | 0.00
0.00 | DTS5E3002
PPS5G1017A | 472.90
0.00 | 0.00
0.00 | 472.90
522.92 | - | GIS
Model | Unknown
Unknown | - | 473.697
523.201 | 472.900
522.588 | | 450
6107
4292 | JLS5D3P0450
STS4FITP6107
DTS6E4P4292 | JLS5D3070
STS4F1T003A
DTS6E4041 | 0.00
465.97
0.00 | JLS5D3069
TICK5975
DTS6E4040 | 0.00
0.00
489.75 | 418.93
465.97
0.00 | 0.00
0.00
489.75 | Model
GIS
- | -
-
GIS | -
-
Unknown | Unknown
Unknown
- | 418.930
465.970
490.368 | 418.158
465.955
489.750 | | 6709
3440
2412 | DTS6E2P6709
EAS6F1P3440
PPS5G2P2412 | STUB6504
EAS6F1062
PPS5G2037 | 0.00
0.00
0.00 | DTS6E2021
EAS6F1060
PPS5G2036 | 475.21
518.08
544.84 | 0.00
0.00
0.00 | 475.21
518.08
544.84 | | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 475.285
518.324
545.310 | 475.210
518.080
544.840 | | 1359
1360 | STS3F4P1359
STS3F4P1360 | STS3F4008
STS3F4007 | 496.15
0.00 | STS3F4007
STS3F4006 | 0.00
490.87 | 496.15
0.00 | 0.00
490.87 | GIS
- | -
GIS | -
Unknown | Unknown
- | 496.150
491.027 | 495.534
490.870 | | 1482
6042
4741 | STS3F4P1482
ACS4C4P6042
DTS7F1P4741 | STS3F4097
ACS4C4053
DTS7F1024 | 0.00
387.88
0.00 | STS3F4093
ACS4C4052
DTS7F1023 | 500.45
0.00
518.40 | 0.00
387.88
0.00 | 500.45
0.00
518.40 | -
GIS
- | GIS
-
GIS | Unknown
-
Unknown | -
Unknown
- | 500.739
387.880
518.607 | 500.450
387.154
518.400 | | 327
329
330 | PPS4H1P0327
ACS4C4P0329
ACS4C4P0330 | PPS4H1004A
STUB5607
STUB5606 | 0.00
0.00
0.00 | PPS4H1004
ACS4C4048
ACS4C4048 | 0.00
394.61
394.61 | 0.00
0.00
0.00 | 535.10
394.61
394.61 | - | Model
GIS
GIS | Unknown
Unknown
Unknown | - | 535.897
394.761
394.696 | 535.100
394.610
394.610 | | 4572
4579 | ECS7D2P4572
DTS7F1P4579 | ECS7D2008
DTS7F1043 | 0.00
510.93 | ECS7D2007
DTS7F1042 | 442.39
0.00 | 0.00
510.93 | 442.39
0.00 | -
GIS | GIS
- | Unknown
- | -
Unknown | 443.273
510.930 | 442.390
510.678 | | 4371
4003
2473 | JLS6E3P4371
EAS6F1P4003
JLS4E3P2473 | JLS6E3093
EAS6F1111
JLS4E3023A | 0.00
0.00
0.00 | JLS6E3092
EAS6F1109
JLS4E3023 | 454.04
525.20
449.75 | 0.00
0.00
0.00 | 454.04
525.20
449.75 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 454.542
525.690
449.861 | 454.040
525.200
449.750 | | 2820
4992
4994 | JLS5D2P2820
RHS7D3P4992
ECS7D2P4994 | JLS5D2014
RHS7D3056A
ECS7D2073 | 0.00
0.00
0.00 | JLS5D2013
RHS7D3056
ECS7D2072 | 441.72
0.00
437.00 | 0.00
0.00
0.00 | 441.72
422.06
437.00 | | GIS
Model
GIS | Unknown
Unknown
Unknown | - | 442.132
422.175
437.528 | 441.720
422.060
437.000 | | 5442
4442 | ECS7E3P5442
DTS6E4P4442 | ECS7E3073
DTS6E4020 | 0.00 | ECS7E3072
DTS6E4019 |
501.99
480.80 | 0.00 | 501.99
480.80 | - | GIS
GIS | Unknown
Unknown | - | 502.373
481.872 | 501.990
480.800 | | 1926
2344
5052 | JLS5D1P1926
PPS5G3P2344
ECS7E1P5052 | JLS5D1070
PPS5G3010
ECS7E1114 | 0.00
0.00
0.00 | JLS5D1069
PPS5G3009
ECS7E1113 | 416.90
526.70
507.49 | 0.00
0.00
0.00 | 416.90
526.70
507.49 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 417.397
527.084
507.790 | 416.900
526.700
507.490 | | 1557
1561
5294 | STS3G3P1557
STS3F4P1561
ECS7E3P5294 | TICK1053
STS374124A
ECS7E3033 | 0.00
0.00
0.00 | STS3G3050
STS3F4123
ECS7E3032 | 513.47
504.19
520.10 | 0.00
0.00
0.00 | 513.47
504.19
520.10 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 513.705
505.350
520.826 | 513.470
504.190
520.100 | | 2334
2215 | DTS5E2P2334
JLS5D1P2215 | DTS5E2061
JLS5D1065 | 0.00
433.58 | DTS5E2060
JLS5D1063 | 545.10
0.00 | 0.00
433.58 | 545.10
0.00 | -
-
GIS | GIS
- | Unknown
- | -
-
Unknown | 545.570
433.580 | 545.100
432.259 | | 6103
5986
6322 | STS4F3TP6103
JLS5D2P5986
ECS7D4P6322 | TICK5971
JLS5D2012
ECS7D4068A | 0.00
0.00
0.00 | STS4F3T009
JLS5D2011
ECS7D4068 | 463.99
440.75
480.40 | 0.00
0.00
0.00 | 463.99
440.75
480.40 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 464.056
441.429
480.700 | 463.990
440.750
480.400 | | 5020
5462
3563 | ECS7E1P5020
ECS7E3P5462
JLS6D2P3563 | ECS7E1068A
STUB4953
JLS6D2023 | 0.00
0.00
0.00 | ECS7E1068
ECS7E3104
JLS6D2022 | 506.73
523.44
438.55 | 0.00
0.00
0.00 | 506.73
523.44
438.55 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 507.231
523.524
438.934 | 506.730
523.440
438.550 | | 5087
2785 | ECS7E3P5087
PPS5H1P2785 | ECS7E3012
PPS5H1048 | 0.00
0.00 | ECS7E3011
PPS5H1047 | 486.86
560.90 | 0.00
0.00 | 486.86
560.90 | | GIS
GIS | Unknown
Unknown | | 487.410
561.564 | 486.860
560.900 | | 1095
3929
3073 | STS3G2P1095
JLS6D2P3929
DTS5E3P3073 | STS3G2027
JLS6D2028
DTS5E3005 | 0.00
0.00
0.00 | STS3G2022
JLS6D2026
DTS5E3002 | 509.95
441.20
472.90 | 0.00
0.00
0.00 | 509.95
441.20
472.90 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 510.254
441.543
474.148 | 509.950
441.200
472.900 | | 1366
4095
2234 | STS3G4P1366
DTS6E2P4095 | STS3G4090
DTS6E2073 | 0.00
0.00
432.50 | STS3G4089
DTS6E2072 | 519.33
484.11 | 0.00
0.00
432.50 | 519.33
484.11 | -
-
GIS | GIS
GIS | Unknown
Unknown | -
-
Linknown | 519.874
485.373
432.500 | 519.330
484.110
432.317 | | 1422
2774 | JLS5D1P2234
STS3F4P1422
DTS5E3P2774 | JLS5D1064
TICK914
DTS5E3058 | 0.00
0.00 | JLS5D1063
STS3F4077
DTS5E3057 | 0.00
499.23
520.50 | 0.00
0.00 | 0.00
499.23
520.50 | - | GIS
GIS | -
Unknown
Unknown | Unknown
-
- | 499.418
521.278 | 499.230
520.500 | | 2099
2210
4396 | JLS5D1P2099
DTS5E2P2210
DTS6F3P4396 | JLS5D1012
DTS5E2032
DTS6F3046A | 0.00
0.00
0.00 | JLS5D1011
DTS5E2031
DTS6F3046 | 419.55
537.20
519.82 | 0.00
0.00
0.00 | 419.55
537.20
519.82 | • | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 419.848
537.788
520.123 | 419.550
537.200
519.820 | | 978
1963 | STS2H4P0978
PPS4F4P1963 | STS2H4036A
PPS4F4015 | 0.00
536.90 | STS2H4036
PPS4F4014 | 545.91
0.00 | 0.00
536.90 | 545.91
0.00 | GIS | GIS
- | Unknown
- | -
Unknown | 546.011
536.900 | 545.910
536.351 | | 5642
5776
389 | RHS8D1P5642
ECS8E3P5776
JLS5D1P0389 | RHS8D1126B
ECS8E3030A
JLS5D1024 | 427.75
0.00
0.00 | RHS8D1126A
ECS8E3030
JLS5D1022 | 0.00
527.17
0.00 | 427.75
0.00
417.80 | 0.00
527.17
0.00 | GIS
-
Interpolate | GIS
- | -
Unknown
Need Confirmation | Unknown
-
Unknown | 427.750
527.546
417.800 | 427.176
527.170
416.943 | | 390
391
2747 | JLS5D1P0390
JLS5D1P0391
JLS5D1P2747 | JLS5D1135
JLS5D1026
JLS5D1038 | 0.00
0.00
0.00 | JLS5D1134
JLS5D1024
JLS5D1037 | 0.00
0.00
424.95 | 0.00
0.00
0.00 | 421.84
417.80
424.95 | - | Model
Interpolate
GIS | Unknown
Unknown
Unknown | - | 422.729
418.681
425.745 | 421.840
417.800
424.950 | | 1815
1816 | ACS4C4P1815
ACS4C4P1816 | TICK1304
TICK1301 | 0.00
0.00 | ACS4C4026
ACS4C4026 | 373.68
373.68 | 0.00
0.00 | 373.68
373.68 | | GIS
GIS | Unknown
Unknown | - | 373.763
373.763 | 373.680
373.680 | | 715
1724
6632 | STS2G2P0715
JLS5D1P1724
DTS6E2P6632 | STS2G2013
JLS5D1118A
DTS6E2077 | 0.00
0.00
0.00 | STS2G2009
JLS5D1118
DTS5E3T029A | 515.67
415.98
0.00 | 0.00
0.00
0.00 | 515.67
415.98
485.08 | - | GIS
GIS
Model | Unknown
Unknown
Unknown | - | 516.186
416.112
486.437 | 515.670
415.980
485.085 | | 1962
3304 | PPS4F4P1962
DTS5E3P3304
ECS8E3P5859 | PPS4F4014
DTS5E3008
ECS8E3009 | 0.00
0.00
0.00 | PPS4F4002
DTS5E3006
ECS8E3008 | 526.20
475.90
485.83 | 0.00
0.00
0.00 | 526.20
475.90
485.83 | - | GIS
GIS
GIS | Unknown
Unknown | - | 527.168
477.008
486.139 | 526.200
475.900
485.830 | | 5859
443
476 | JLS5D3P0443
EAS6G4P0476 | JLS5D3068
EAS6G4014 | 0.00
0.00 | JLS5D3054
EAS6G4013 | 0.00
0.00 | 0.00
0.00 | 415.23
568.60 | - | Model
Model | Unknown
Unknown
Unknown | - | 416.039
568.963 | 415.130
568.500 | | 1593
2655
6560 | STS3G3P1593
DTS6E1P2655
ACS4C2P6560 | STS3G3057A
STUB2146
ACS4C2076 | 0.00
0.00
0.00 | STS3G3057
DTS6E1036
ACS4C2075 | 509.89
470.65
460.65 | 0.00
0.00
0.00 | 509.89
470.65
460.65 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 510.286
470.774
431.371 | 509.890
470.650
430.550 | | 4656
4662 | DTS7F1P4656
DTS7F1P4662 | DTS7F1004
DTS7F1015 | 0.00
512.76 | DTS7F1003
DTS7F1014 | 504.76
0.00 | 0.00
512.76 | 504.76
0.00 | -
GIS | GIS
- | Unknown
- | -
Unknown | 505.128
512.760 | 504.760
511.738 | | 2964
5326
2158 | PPS5G4P2964
ECS7E3P5326
DTS5E2P2158 | PPS5G4073
ECS7E3107
TICK1634 | 0.00
0.00
0.00 | PPS5G4072
ECS7E3106
DTS5E2009 | 555.92
521.64
501.11 | 0.00
0.00
0.00 | 555.92
521.64
501.11 | - | GIS
GIS
GIS | Unknown
Unknown
Unknown | - | 556.323
522.313
501.277 | 555.920
521.640
501.110 | | 1227
3148
3820 | STS3F4P1227
EAS6F2P3148
DTS6E2P3820 | STS3F4027
EAS6F2042
DTS6E2010B | 491.20
0.00
0.00 | STS3F4026
EAS6F2041
DTS6E2010A | 0.00
521.00
0.00 | 491.20
0.00
0.00 | 0.00
521.00
478.69 | GIS
-
- | -
GIS
Model | -
Unknown
Unknown | Unknown
-
- | 491.200
521.490
481.017 | 490.305
521.000
478.690 | | 4279
5196 | JLS6E3P4279
ECS7E3P5196 | JLS6E3037
ECS7E3019 | 461.61
0.00 | JLS6E3036
ECS7E3018 | 0.00
497.50 | 461.61
0.00 | 0.00
497.50 | GIS
- | -
GIS | -
Unknown | Unknown
- | 461.610
498.293 | 461.284
497.500 | | 3341 | JLS5D3P3341 | JLS5D3016 | 0.00 | JLS5D3015 | 428.00 | 0.00 | 428.00 | • | GIS | Unknown | - | 428.488 | 428.000 | | | | | | Tak | ole 1. List of | Gravity Mains v | vith Unknown In | vert Elevation b | y Priority | | | | | |--------------|----------------------------|------------------------|----------------------------------|--------------------------|---------------------------------------|----------------------------------|-------------------|--------------------------|-------------------|-------------------------------------|---------------------|----------------------------------|--------------------| | | | GIS Inf | ormation | | | Proposed In | vert Elevation | Sou | ırce | Sta | atus | Prop | oosed | | ID | PipeID | MhUpstream
ID | Upstream Invert
Elevation, ft | Mh Downstream
ID | Downstream
Invert
Elevation, ft | Upstream Invert
Elevation, ft | Downstream Invert | Upstream Invert | Downstream Invert | Upstream Invert | Downstream Invert | Upstream Invert
Elevation, ft | Downstream Invert | | 5212 | ECS7E3P5212 | ECS7E3059 | 0.00 | ECS7E3058 | 496.26 | 0.00 | 496.26 | - Opstream invert | GIS | Unknown | - Downstream invert | 496,728 | 496.260 | | 779 | STS2F4P0779 | STS2F4011 | 0.00 | STS2F4009 | 493.28 | 0.00 | 493.28 | - | GIS | Unknown | - | 493.648 | 493.280 | | 780 | STS2F4P0780 | STS2F4010 | 0.00 | STS2F4009 | 493.28 | 0.00 | 493.28 | - | GIS | Unknown | - | 493.874 | 493.280 | | 1778 | PPS4H3P1778 | PPS4H3021 | 0.00 | PPS4H3020 | 542.44 | 0.00 | 542.44 | - | GIS | Unknown | - | 542.489 | 542.440 | | 2676 | DTS5E3P2676 | DTS5E3025 | 0.00 | DTS5E3024 | 533.00 | 0.00 | 533.00 | - | GIS | Unknown | - | 533.251 | 533.000 | | 2679
2039 | DTS5E3P2679
PPS4H3P2039 | DTS5E3103
TICK1528 | 0.00 | DTS5E3101
PPS4H3001R | 515.58
531.79 | 0.00 | 515.58
531.79 | - | GIS
GIS | Unknown
Unknown | - | 515.910
531.899 | 515.580
531.790 | | 7633 | JLS5D3P7633 | JLS5D3028 | 433.47 | JLS5D3024A | 0.00 | 433.47 | 0.00 | GIS | - | UNKNOWN | Unknown | 433.470 | 433.103 | | 7634 | ACS2C4P7634 | ACS4C4010 | 374.22 | ACS4C4010A | 0.00 | 374.22 | 0.00 | GIS | - | | Unknown | 374.220 | 374.098 | | 7636 | ACS2C4P7636 | ACS4C4008A | 0.00 | ACS4C4008 | 372.40 | 0.00 | 372.40 | - | GIS | Unknown | - | 372.786 | 372.400 | | 4285 | DTS6E4P4285 | DTS6E4092 | 0.00 | DTS6E4070 | 0.00 | 0.00 | 500.30 | - | Model | Unknown | - | 501.551 | 500.300 | | 4208 | DTS6F3P4208 | DTS6F3005 | 0.00 | DTS6F3004 | 504.50 | 0.00 | 504.50 | - | GIS | Unknown | - |
505.754 | 504.500 | | 2928 | JLS5D3P2928 | JLS5D3080 | 0.00 | JLS5D3079 | 425.10 | 0.00 | 425.10 | - | GIS | Unknown | - | 425.470 | 425.100 | | 1505 | STS3F4P1505 | STS3F4099 | 0.00 | STS3F4098 | 0.00 | 0.00 | 500.37 | -
Mandal | Interpolate | Unknown | Need Confirmation | 501.027 | 500.370 | | 1525
7374 | STS3F4P1525
STS3F4P7374 | STS3F4100
STS3F4144 | 0.00 | STS3F4099
STS3F4100 | 0.00 | 502.31
0.00 | 0.00
502.31 | Model | -
Model | -
Unknown | Unknown | 502.310
503.224 | 501.453
502.310 | | 5953 | DTS6E1P5953 | DTS6E1034 | 464.80 | DTS6E1033 | 0.00 | 464.80 | 0.00 | GIS | - Iviouei | - Ulkilowii | Unknown | 464.800 | 464.448 | | 5954 | DTS6E1P5954 | DTS6E1033 | 0.00 | DTS5E3T014 | 462.20 | 0.00 | 462.20 | - | GIS | Unknown | - | 463.406 | 462.200 | | 7605 | JLS6D2P7605 | JLS6D2066 | 440.99 | JLS6D2066A | 0.00 | 440.99 | 0.00 | GIS | - | - | Unknown | 440.990 | 439.980 | | 3416 | JLS6D2P3416 | JLS6D2008 | 0.00 | JLS6D2007 | 442.40 | 0.00 | 442.40 | - | GIS | Unknown | - | 443.469 | 442.400 | | 7588 | JLS6D2P7588 | JLS6D2009 | 450.19 | JLS6D2008 | 0.00 | 450.19 | 0.00 | GIS | - | - | Unknown | 450.190 | 449.141 | | 3417 | JLS6D2P3417 | JLS6D2011 | 0.00 | JLS6D2009 | 450.19 | 0.00 | 450.19 | - | GIS | Unknown | - | 450.669 | 450.190 | | 3537 | JLS6D2P3537 | JLS6D2010 | 0.00 | JLS6D2009 | 450.19 | 0.00 | 450.19 | - | GIS
GIS | Unknown | • | 451.013 | 450.190 | | 3677
3676 | JLS6D2P3677
JLS6D2P3676 | JLS6D2088
JLS6D2089 | 0.00 | JLS6D2088A
JLS6D2089A | 452.30
457.75 | 0.00 | 452.30
457.75 | - | GIS | Unknown
Unknown | - | 453.465
458.902 | 452.300
457.750 | | 7607 | DTS6E4P7606 | DTS6E4053A | 0.00 | DTS6E4053 | 0.00 | 0.00 | 495.60 | - | Model | Unknown | - | 496.057 | 495.380 | | 7611 | JLS5D2P7611 | JLS5D2090 | 442.40 | JLS5D2084A | 0.00 | 442.40 | 0.00 | GIS | - | - | Unknown | 442.400 | 437.090 | | 6077 | JLS5D2P6077 | JLS5D2123A | 0.00 | JLS5D2122 | 445.10 | 0.00 | 445.10 | - | GIS | Unknown | - | 445.697 | 445.100 | | 5595 | ECS8D2P5595 | ECS8D2079 | 0.00 | ECS8D2078 | 462.40 | 0.00 | 462.40 | - | GIS | Unknown | - | 463.142 | 462.400 | | 5611 | ECS8D2P5611 | ECS8D2077 | 0.00 | ECS8D2076 | 475.00 | 0.00 | 475.00 | - | GIS | Unknown | - | 475.354 | 475.000 | | 5635
4588 | ECS8D2P5635
DTS6E4P4588 | ECS8D2056
DTS6E4086 | 0.00
520.93 | ECS8D2055
DTS6E4085 | 467.83
0.00 | 0.00
520.93 | 467.83
0.00 | -
GIS | GIS | Unknown | -
Unknown | 468.704
520.930 | 467.830
519.621 | | 5912 | ECS8E3P5912 | ECS8E3020A | 0.00 | ECS8E3020 | 480.91 | 0.00 | 480.91 | GIS
- | GIS | -
Unknown | Unknown | 520.930
481.402 | 480.910 | | 3543 | JLS5D3P3543 | JLS5D3049 | 0.00 | JLS5D3048 | 433.34 | 0.00 | 433.34 | - | GIS | Unknown | - | 434.068 | 433.340 | | 4431 | RHS6D3P4431 | RHS6D3050 | 0.00 | RHS6D3049 | 428.58 | 0.00 | 428.58 | - | GIS | Unknown | | 429.059 | 428.580 | | 4626 | RHS6D3P4626 | RHS6D3047 | 0.00 | RHS6D3046 | 425.68 | 0.00 | 425.68 | - | GIS | Unknown | - | 425.957 | 425.680 | | 4605 | RHS6D3P4605 | RHS6D3044 | 0.00 | RHS6D3043 | 421.12 | 0.00 | 421.12 | - | GIS | Unknown | - | 421.388 | 421.120 | | 3179 | DTS6E1P3179 | TICK2703 | 0.00 | DTS6E1074 | 474.50 | 0.00 | 474.50 | - | GIS | Unknown | - | 474.609 | 474.500 | | 3163 | DTS6E1P3163 | TICK2683
EAS6F1100R | 0.00 | DTS6E1074 | 474.50 | 0.00
524.16 | 474.50
0.00 | - | GIS | Unknown | - | 474.596 | 474.500 | | 3849
2698 | EAS6F1P3849
JLS5D2P2698 | JLS5D2088 | 524.16
0.00 | EAS6F1099
JLS5D2086 | 0.00
437.20 | 0.00 | 437.20 | GIS
- | -
GIS | -
Unknown | Unknown | 524.160
437.574 | 522.880
437.200 | | 2658 | JLS5D2P2658 | JLS5D2087 | 0.00 | JLS5D2086 | 437.20 | 0.00 | 437.20 | - | GIS | Unknown | - | 437.727 | 437.200 | | 7382 | DTS6E4P7382 | DTS6F3002 | 0.00 | DTS6E4091 | 0.00 | 500.50 | 0.00 | Model | - | - | Unknown | 500.500 | 499.415 | | 2858 | JLS5D2P2858 | JLS5D2042 | 0.00 | JLS5D2040 | 435.19 | 0.00 | 435.19 | - | GIS | Unknown | - | 435.481 | 435.190 | | 5999 | DTS6E1P5999 | STUB2324 | 0.00 | DTS5E3T005 | 448.89 | 0.00 | 448.89 | - | GIS | Unknown | - | 449.036 | 448.890 | | 4444 | DTS6E4P4444 | DTS6E4072 | 0.00 | DTS6E4071 | 0.00 | 0.00 | 502.82 | - | Model | Unknown | - | 504.110 | 502.820 | | 4359
4666 | DTS6E4P4359
ECS7D2P4666 | DTS6E4093 | 0.00 | DTS6E4071 | 0.00 | 0.00 | 502.82 | - | Model | Unknown | - | 504.078
457.027 | 502.820 | | 4672 | ECS7D2P4666
ECS7D2P4672 | ECS7D2089
ECS7D2091 | 0.00
462.36 | ECS7D2084
ECS7D2089 | 456.16
0.00 | 462.36 | 456.16
0.00 | GIS | GIS
- | Unknown
- | -
Unknown | 457.027
462.360 | 456.160
461.423 | | 4758 | ECS7D2P4758 | ECS7D2091 | 462.95 | ECS7D2089 | 0.00 | 462.95 | 0.00 | GIS | - | | Unknown | 462.950 | 461.561 | | 4674 | ECS7D2P4674 | ECS7D2096 | 0.00 | ECS7D2095 | 467.30 | 0.00 | 467.30 | - | GIS | Unknown | - | 467.907 | 467.300 | | 4369 | JLS6E3P4369 | JLS6E3092 | 0.00 | JLS6E3013 | 0.00 | 454.04 | 452.86 | Interpolate | Model | Need Confirmation | - | 454.040 | 452.860 | | 3257 | JLS5D3P3257 | JLS5D3039 | 0.00 | JLS5D3038 | 0.00 | 428.33 | 426.03 | Interpolate | Model | Need Confirmation | - | 428.330 | 426.030 | | 217 | STS3G4P0217 | STS3G4088 | 0.00 | STS3G4086 | 0.00 | 519.33 | 517.31 | Interpolate | Model | Need Confirmation | - | 519.330 | 517.310 | | 4822 | RHS7D3P4822 | RHS7D3066 | 0.00 | RHS7D3063 | 429.00 | 429.00 | 429.00 | AMBIGUOUS MH | GIS | Need Confirmation | - | 429.459 | 429.000 | | 4424
5761 | DTS6E4P4424
ECS8E3P5761 | DTS6E4025
ECS8E3067 | 0.00 | DTS6E4024
ECS8E3066 | 0.00 | 485.20
517.51 | 485.20
516.71 | Interpolate AMBIGUOUS MH | Model
Model | Need Confirmation Need Confirmation | - | 485.200
516.817 | 485.200
516.710 | | 7022 | EAS7G2P7022 | EAS7G2005 | 0.00 | EAS7G2004 | 0.00 | 517.51 | 576.78 | Ambiguous MH | Model | Need Confirmation | - | 577.265 | 576.710 | | 997 | STS2G3P0997 | STS2G3006 | 0.00 | STS2G3003 | 0.00 | 492.33 | 491.23 | Interpolate | Model | Need Confirmation | - | 492.330 | 491.230 | | 5399 | ECS7E3P5399 | ECS7E3112 | 0.00 | ECS7E3110 | 0.00 | 518.20 | 517.20 | Ambiguous MH | Model | Need Confirmation | - | 518.150 | 517.200 | | 7447 | PPS4G1TP7447 | PPS4G1T009 | 515.19 | PPS4G1T008A | 0.00 | 515.19 | 515.19 | GIS | Interpolate | - | Need Confirmation | 515.190 | 514.670 | | 7554 | JLS5C2P7554 | JLS5C2F001 | 0.00 | СВ | 0.00 | 397.20 | 402.66 | Model | Interpolate | - | Need Confirmation | 397.270 | 397.217 | | 7608 | JLS5D2P7608 | JLS5D2079 | 0.00 | JLS5D2077A | 448.17 | 452.42 | 448.17 | Interpolate | GIS | Need Confirmation | - | 449.172 | 448.170 | | Table 2. | GIS and | Model | Discrepancy | by | Diameter | |----------|---------|-------|--------------------|----|----------| |----------|---------|-------|--------------------|----|----------| | | Manhole | Manhole | GIS | Model | Proposed | | | | | | | | |--------------|-------------|---------------|----------------|----------------|----------------|--|--|--|--|--|--|--| | Pipe ID | Upstream ID | Downstream ID | Diameter, inch | Diameter, inch | Diameter, inch | | | | | | | | | JLS5D1P0643 | JLS5D1134 | JLS5D1044 | 12 | 33 | 12 | | | | | | | | | JLS5D1TP0382 | JLS5D1001 | JLS5D1T002 | 12 | 30 | 12 | | | | | | | | | JLS5D1P0639 | JLS5D1043 | JLS5D1042 | 12 | 30 | 12 | | | | | | | | | JLS5D1P0640 | JLS5D1042 | JLS5D1001 | 12 | 30 | 12 | | | | | | | | | JLS5D1P0641 | JLS5D1044 | JLS5D1043 | 12 | 30 | 12 | | | | | | | | | DTS5E3TP2879 | DTS5E3T003 | DTS5E3T002 | 21 | 24 | 21 | | | | | | | | | RHS8D1P0054 | RHS8D1002 | RHS8D1001 | 36 | 18 | 36 | | | | | | | | | DTS6E2P3874 | DTS6E2054 | DTS5E3T030 | 18 | 15 | 18 | | | | | | | | | DTS6E2P3965 | DTS6E2061 | DTS6E2054 | 18 | 15 | 18 | | | | | | | | | JLS6E3P4088 | JLS6E3075 | JLS6E3074 | 12 | 10 | 12 | | | | | | | | | DTS6E2P3757 | DTS6E2033 | DTS6E2030 | 6 | 10 | 6 | | | | | | | | | JLS6D2P6019 | JLS6D2019 | JLS6D2018 | 8 | 10 | 8 | | | | | | | | | JLS6D2P6020 | JLS6D2020 | JLS6D2019 | 8 | 10 | 8 | | | | | | | | | JLS5D2P2535 | JLS5D2004 | JLS5D2003 | 8 | 10 | 8 | | | | | | | | | JLS5D2P2539 | JLS5D2005 | JLS5D2004 | 8 | 10 | 8 | | | | | | | | | JLS6E3P3979 | JLS6E3074 | JLS6E3073 | 12 | 10 | 12 | | | | | | | | | DTS6E2P3909 | DTS6E2025 | DTS6E2019 | 8 | 10 | 8 | | | | | | | | | DTS6E2P3949 | DTS6E2024 | DTS6E2017 | 8 | 10 | 8 | | | | | | | | | ACS5C1P2748 | ACS5C1021 | ACS5C1020 | 8 | 10 | 8 | | | | | | | | | JLS6E3P4107 | JLS6E3076 | JLS6E3075 | 12 | 10 | 12 | | | | | | | | | JLS6D2P3507 | JLS6D2021 | JLS6D2019 | 8 | 10 | 8 | | | | | | | | | JLS6E3P4166 | JLS6E3078 | JLS6E3076 | 12 | 10 | 12 | | | | | | | | | JLS6E3P4262 | JLS6E3081 | JLS6E3079 | 12 | 10 | 12 | | | | | | | | | JLS6E3P4224 | JLS6E3079 | JLS6E3078 | 12 | 10 | 12 | | | | | | | | | DTS6E4P4226 | DTS6E4039 | DTS6E4038 | 10 | 10 | 10 | | | | | | | | | JLS5C2FP7533 | JLS5C2F002 | JLS5C2F001 | 12 | 10 | 12 | | | | | | | | | ECS8D2P5701 | ECS8D2061 | ECS8D2060 | 15 | 8 | 15 | | | | | | | | | ECS8D2P5699 | ECS8D2060 | ECS8D2057 | 15 | 8 | 15 | | | | | | | | | JLS5D2P5994 | JLS5D2074 | JLS5D4T011 | 10 | 8 | 10 | | | | | | | | | JLS6D2P6869 | JLS6D2090 | JLS6D2090A | 10 | 8 | 10 | | | | | | | | | JLS6D2P6731 | JLS6D2088A | DTS6E1T009 | 10 | 8 | 10 | | | | | | | | | JLS6D2P6734 | JLS6D2090A | JLS6D2089A | 10 | 8 | 10 | | | | | | | | | EAS6F1P3283 | EAS6F1018 | EAS6F1013 | 8 | 6 | 8 | | | | | | | | | EAS6F1P3319 | EAS6F1013 | EAS6F1012 | 8 | 6 | 8 | | | | | | | | | EAS6F1P3359 | EAS6F1012 | EAS6F1001A | 8 | 6 | 8 | | | | | | | | | EAS6F1P7049 | EAS6F1001A | EAS6F1001 | 8 | 6 | 8 | | | | | | | | | | Table 3. List of Larger Gravity Mains Upstream of Smaller Gravity Main | | | | | | | | | | | |------------------------------|--|----------------------------|-----------------------|---|--|--|--|--|--|--|--| | Pipe ID | Manhole
Upstream ID | Manhole
Downstream ID |
GIS
Diameter, inch | Comments | | | | | | | | | RHS6C2TP0076 | RHS6C2T003 | RHS6C2T002 | 36 | 36-inch between 39-inch | | | | | | | | | DTS5F3TP2744
DTS5F3TP2810 | DTS5F3T012
DTS5F3T011 | PPS5F4001
DTS5F3T010 | 30 | 30-inch to 27-inch
30-inch to 27-inch | | | | | | | | | DTS5F3TP2881 | DTS5F3T010 | DTS5F3T009 | 30 | 30-inch to 27-inch | | | | | | | | | DTS5F3TP2925
DTS5F3TP2988 | DTS5F3T009
DTS5F3T008 | DTS5F3T008
DTS5F3T007 | 30
30 | 30-inch to 27-inch
30-inch to 27-inch | | | | | | | | | DTS5F3TP3035 | DTS5F3T007 | DTS5F3T006 | 30 | 30-inch to 27-inch | | | | | | | | | DTS5F3TP3084
DTS5F3TP7021 | DTS5F3T006
PPS5F4001 | DTS5F3T005
DTS5F3T011 | 30 | 30-inch to 27-inch
30-inch to 27-inch | | | | | | | | | PPS5F2TP2625 | PPS5F2T001A | PPS5F2T001 | 30 | 30-inch to 27-inch | | | | | | | | | PPS5F2TP2684
DTS5F3TP3111 | PPS5F2T001
DTS5F3T005 | DTS5F3T012
DTS5F3T004 | 30 27 | 30-inch to 27-inch
27-inch to 24 | | | | | | | | | DTS5F3TP3120 | DTS5F3T004 | DTS5F3T002 | 27 | 27-inch to 24 | | | | | | | | | DTS5F3TP5945
DTS5F3TP7411 | DTS5F3T002
DTS5F3T002 | DTS5F3T001A
DTS5F3T001A | 24
24 | 24-inch between 27-inch
24-inch between 27-inch | | | | | | | | | DTS6E1TP6530 | DTS6E1T019 | DTS6E1T018 | 24 | 24-inch between 27-inch | | | | | | | | | DTS6E1TP6532
DTS6E1TP6696 | DTS6E1T020
DTS6E1T036 | DTS6E1T019
DTS6E1T035 | 24
24 | 24-inch between 27-inch
24-inch between 27-inch | | | | | | | | | DTS6E1TP6698 | DTS6E1T033 | DTS6E1T031 | 24 | 24-inch between 27-inch | | | | | | | | | DTS6E1TP6699
DTS6E1TP6701 | DTS6E1T031
DTS6E1T034 | DTS6E1T030
DTS6E1T033 | 24
24 | 24-inch between 27-inch
24-inch between 27-inch | | | | | | | | | DTS6E1TP6702 | DTS6E1T035 | DTS6E1T034 | 24 | 24-inch between 27-inch | | | | | | | | | DTS6E1TP6730
DTS6E1TP6733 | DTS6E1T015
DTS6E1T018 | DTS6E1T014
DTS6E1T017 | 24
24 | 24-inch between 27-inch
24-inch between 27-inch | | | | | | | | | DTS6E1TP6735 | DTS6E1T016 | DTS6E1T017 | 24 | 24-inch between 27-inch | | | | | | | | | DTS6E1TP6736 | DTS6E1T014 | DTS6E1T013 | 24 | 24-inch between 27-inch | | | | | | | | | DTS6E1TP6737
DTS6E1TP6738 | DTS6E1T013
DTS6E1T012 | DTS6E1T012
DTS6E1T011 | 24
24 | 24-inch between 27-inch
24-inch between 27-inch | | | | | | | | | DTS6E1TP6739 | DTS6E1T011 | DTS6E1T010 | 24 | 24-inch between 27-inch | | | | | | | | | DTS6E1TP6740
DTS6E1TP6866 | DTS6E1T017
DTS5F3T001 | DTS6E1T016
DTS6E1T036 | 24
24 | 24-inch between 27-inch
24-inch between 27-inch | | | | | | | | | DTS6E1TP7073 | DTS6E1T030 | DTS6E1T029 | 24 | 24-inch between 27-inch | | | | | | | | | DTS6E1TP7074
DTS6E1TP7075 | DTS6E1T029
DTS6E1T028 | DTS6E1T028
DTS6E1T027 | 24 24 | 24-inch between 27-inch
24-inch between 27-inch | | | | | | | | | DTS6E1TP7077 | DTS6E1T027 | DTS6E1T026 | 24 | 24-inch between 27-inch | | | | | | | | | DTS6E1TP7078
DTS6E1TP7079 | DTS6E1T026
DTS6E1T025 | EAS6G4093
DTS6E1T024 | 24
24 | 24-inch between 27-inch
24-inch between 27-inch | | | | | | | | | DTS6E1TP7080 | DTS6E1T024 | DTS6E1T023 | 24 | 24-inch between 27-inch | | | | | | | | | DTS6E1TP7081
DTS6E1TP7082 | DTS6E1T023
DTS6E1T022 | DTS6E1T022
DTS6E1T021 | 24
24 | 24-inch between 27-inch
24-inch between 27-inch | | | | | | | | | DTS6E1TP7083 | DTS6E1T021 | DTS6E1T020 | 24 | 24-inch between 27-inch | | | | | | | | | DTS6E1TP7386
PPS4H3P1777 | DTS5F3T001A
PPS4H3022 | DTS5F3T001
PPS4H3020 | 24
18 | 24-inch between 27-inch
18-inch to 10-inch | | | | | | | | | PPS4H3P1777
PPS4H4P1691 | PPS4H3022
PPS4H4005 | PPS4H4004 | 18 | 18-inch to 10-inch | | | | | | | | | PPS4H4P1707 | PPS4H4004 | PPS4H4003 | 18 | 18-inch to 10-inch | | | | | | | | | PPS4H4P1730
PPS4H4P1760 | PPS4H4003
PPS4H4002 | PPS4H4002
PPS4H4001 | 18
18 | 18-inch to 10-inch
18-inch to 10-inch | | | | | | | | | PPS4H4P1775 | PPS4H4001 | PPS4H3022 | 18 | 18-inch to 10-inch | | | | | | | | | RHS8D3P5732
RHS8D3P5750 | RHS8D3018
RHS8D3019 | RHS8D3017
RHS8D3018 | 18
18 | 18-inch between 15-inch
18-inch between 15-inch | | | | | | | | | RHS8D3P5758 | RHS8D3020 | RHS8D3019 | 18 | 18-inch between 15-inch | | | | | | | | | RHS8D3P5762
JLS5D1P2036 | RHS8D3021
JLS5D1099 | RHS8D3020
JLS5D1098 | 18
15 | 18-inch between 15-inch
15-inch to 8-inch | | | | | | | | | ACS4C2P0283 | TICK5565 | ACS4C2028 | 12 | 12-inch to 8-inch | | | | | | | | | DTS6F3P4690
DTS6F3P4705 | DTS6F3033
DTS6F3034 | DTS6F3032
DTS6F3033 | 12
12 | 12-inch conveys to 8-inch
12-inch conveys to 8-inch | | | | | | | | | DTS6F3P4706 | DTS6F3035 | DTS6F3034 | 12 | 12-inch conveys to 8-inch | | | | | | | | | EAS6F1P3220
EAS6F2P3231 | EAS6F2039
EAS6F2040 | EAS6F1033
EAS6F2039 | 12
12 | 12-inch to 8-inch
12-inch to 8-inch | | | | | | | | | EAS6F2P3237 | EAS6F2043 | EAS6F2040 | 12 | 12-inch to 8-inch | | | | | | | | | EAS6F2P3240
EAS6F2P3288 | EAS6F2046
EAS6F2050 | EAS6F2043
EAS6F2046 | 12
12 | 12-inch to 8-inch
12-inch to 8-inch | | | | | | | | | EAS6F2P3296 | EAS6F2055 | EAS6F2050 | 12 | 12-inch to 8-inch | | | | | | | | | EAS6F2P3308
EAS6F2P3336 | EAS6F2059
EAS6F2060 | EAS6F2055
EAS6F2059 | 12
12 | 12-inch to 8-inch
12-inch to 8-inch | | | | | | | | | EAS6F2P3402 | EAS6F2061 | EAS6F2060 | 12 | 12-inch to 8-inch | | | | | | | | | EAS6F2P3502
EAS6F2P3511 | EAS6F2063
EAS6F2064 | EAS6F2061
EAS6F2063 | 12
12 | 12-inch to 8-inch
12-inch to 8-inch | | | | | | | | | EAS6F2P3514 | EAS6F2065 | EAS6F2064 | 12 | 12-inch to 8-inch | | | | | | | | | ECS8E3P5911
RHS7D3P4861 | ECS8E3025
RHS7D3054 | ECS8E3024
RHS7D3053 | 12
12 | 12-inch conveys to 8 and 10-inch
12-inch conveys to 8-inch | | | | | | | | | RHS7D3P4864 | RHS7D3062 | RHS7D3054 | 12 | 12-inch conveys to 8-inch | | | | | | | | | RHS7D3P4873
RHS7D3P4946 | RHS7D3053
RHS7D3068 | RHS7D3049
RHS7D3062 | 12
12 | 12-inch conveys to 8-inch
12-inch conveys to 8-inch | | | | | | | | | RHS7D3P4995 | RHS7D3069 | RHS7D3068 | 12 | 12-inch conveys to 8-inch | | | | | | | | | RHS7D3P5046
RHS7D3P5099 | RHS7D3070
RHS7D3071 | RHS7D3069
RHS7D3070 | 12
12 | 12-inch conveys to 8-inch
12-inch conveys to 8-inch | | | | | | | | | RHS7D3P5100 | RHS7D3077 | RHS7D3070
RHS7D3071 | 12 | 12-inch conveys to 8-inch | | | | | | | | | STS2H1P0789 | STS2H1057 | STS2H1056 | 12 | 12-inch to 8-inch | | | | | | | | | STS2H1P0808
STS2H1P0863 | STS2H1056
STS2H1055 | STS2H1054
STS2H1054 | 12
12 | 12-inch to 8-inch
12-inch to 8-inch | | | | | | | | | STS3G2P7667 | STS3G2057B | STS3G2057A | 12 | 12-inch to 8-inch | | | | | | | | | STS3G2P7668
STS3G3P1254 | STS3G2057C
STS3G4001 | STS3G2057B
STS3G3077 | 12
12 | 12-inch to 8-inch
10-inch between 8-inch | | | | | | | | | STS3G4P1268 | STS3G4002 | STS3G4001 | 12 | 10-inch between 8-inch | | | | | | | | | STS3G4P1272
JLS5C2P0421 | STS3G4004
JLS5C2056 | STS3G4002
JLS5C2064 | 12
10 | 10-inch between 8-inch
10-inch between 8-inch | | | | | | | | | JLS5C2P6066 | JLS5C2064 | JLS5C2062 | 10 | 10-inch between 8-inch | | | | | | | | | JLS5D2P2583
JLS6D2P3064 | JLS5D2001A
JLS6D2070 | JLS5D2004
JLS6D2066 | 10 | 10-inch betweeen 8-inch 10-inch between 8-inch | | | | | | | | | JLS6D2P7605 | JLS6D2066 | JLS6D2066A | 10 | 10-inch between 8-inch | | | | | | | | | JLS6E3P4091
JLS6E3P4145 | JLS6E3026
JLS6E3001A | JLS6E3025
JLS6E3001 | 10 | 10-inch between 8-inch
10-inch between 8-inch | | | | | | | | | JLS6E3P4180 | JLS6E3003 | JLS6E3002 | 10 | 10-inch between 8-inch | | | | | | | | | JLS6E3P4185
JLS6E3P6178 | JLS6E3030
JLS6E3002 | JLS6E3026A
JLS6E3001A | 10 | 10-inch between 8-inch 10-inch between 8-inch | | | | | | | | | JLS6E3P6744 | JLS6E3026A | JLS6E3026 | 10 | 10-inch between 8-inch | | | | | | | | | PPS4F4P1667
PPS4F4P6067 | PPS4F4113
PPS4F4111 | PPS4F4114
PPS4F4112 | 10 | 10-inch between 8-inch
10-inch between 8-inch | | | | | | | | | PPS4F4P6068 | PPS4F4112 | PPS4F4113 | 10 | 10-inch between 8-inch | | | | | | | | | PPS5G4P2304
PPS5G4P2492 | PPS5G4002
PPS5G4003 | PPS5G4001
PPS5G4002 | 10 | 10-inch to 8-inch
10-inch to 8-inch | | | | | | | | | PPS5G4P2587 | PPS5G4004 | PPS5G4003 | 10 | 10-inch to 8-inch | | | | | | | | | WEST YOST ASSOCIATES | | | | | | | | | | | | | | Manhole | Manhole | GIS | | |-------------|-------------|---------------|----------------|-----------------------| | Pipe ID | Upstream ID | Downstream ID | Diameter, inch | Comments | | PPS5G4P3018 | PPS6G2001A | PPS5G4008 | 10 | 10-inch to 8-inch | | PPS5G4P6320 | PPS5G4001 | PPS5G4001A | 10 | 10-inch to 8-inch | | PPS6H1P3488 | PPS6H1012 | PPS6H1011 | 10 | 10-inch to 8-inch | | PPS6H1P3491 | PPS6H1013 | PPS6H1012 | 10 | 10-inch to 8-inch | | PPS6H1P3492 | PPS6H1013A | PPS6H1013 | 10 | 10-inch to 8-inch | | PPS6H1P3494 | PPS6H1014 | PPS6H1013A | 10 | 10-inch to 8-inch | | PPS6H1P3497 | PPS6H1011 | PPS6H1011A | 10 | 10-inch to 8-inch | | PPS6H1P3549 | PPS6H1011A | PPS6H1010 | 10 | 10-inch to 8-inch | | PPS6H1P3685 | PPS6H1010 | PPS6H1009 | 10 | 10-inch to 8-inch | | PPS6H1P3732 | PPS6H1009 | PPS6H1008 | 10 | 10-inch to 8-inch | | PPS6H1P3753 | PPS6H1008 | PPS6H1007 | 10 | 10-inch to 8-inch | | PPS6H1P3754 | PPS6H1007 | PPS6H1006 | 10 | 10-inch to 8-inch | | STS3G2P1262 | STS3G2051 | STS3G2050 | 10 | 10-inch between 8-inc | | STS3G2P6023 | STS3G2052 | STS3G2051 | 10 | 10-inch between 8-inc | | STS3G2P7639 | STS3G2050 | STS3G2072 | 10 | 10-inch between 8-inc | | STS3G2P7640 | STS3G2064 | STS3G2037 | 10 | 10-inch between 8-inc | | STS3G2P7641 | STS3G2072 | STS3G2077 | 10 | 10-inch between 8-inc | | STS3G2P7642 | STS3G2077 | STS3G2070 | 10 | 10-inch between 8-inc | | STS3G2P7643 | STS3G2070 | STS3G2069 | 10 | 10-inch between 8-inc | | STS3G2P7644 | STS3G2069 | STS3G2068 | 10 | 10-inch between 8-inc | | STS3G2P7645 | STS3G2068 | STS3G2067 | 10 | 10-inch between 8-inc | |
STS3G2P7646 | STS3G2067 | STS3G2066 | 10 | 10-inch between 8-inc | | STS3G2P7647 | STS3G2066 | STS3G2065 | 10 | 10-inch between 8-inc | | STS3G2P7648 | STS3G2065 | STS3G2064 | 10 | 10-inch between 8-inc | | STS3G3P1119 | STS3G3071 | STS3G3070 | 10 | 10-inch between 8-inc | | STS3G3P1124 | STS3G3072 | STS3G3071 | 10 | 10-inch between 8-inc | | STS3G3P1199 | STS3G3075 | STS3G3072 | 10 | 10-inch between 8-inc | | STS3G3P1244 | STS3G3076 | STS3G3075 | 10 | 10-inch between 8-inc | | STS3G3P1255 | STS3G3077 | STS3G3076 | 10 | 10-inch between 8-inc | | STS3G3P1292 | STS3G3078 | STS3G3077 | 10 | 10-inch between 8-inc | | STS3G4P1280 | STS3G4005 | STS3G4004 | 10 | 10-inch between 8-inc | | STS3G4P1343 | STS3G4006 | STS3G4005 | 10 | 10-inch between 8-inc | | ACS4C2P0298 | ACS4C2028 | ACS4C2027 | 8 | 8-inch between 12-inc | | JLS6D2P2961 | JLS6D2066A | JLS5D2074 | 8 | 8-inch between 10-inc | | RHS8D3P5824 | RHS8D3036 | RHS8D3035 | 8 | 8-inch between 15-inc | | RHS8D3P5830 | RHS8D3035 | RHS8D3034 | 8 | 8-inch between 15-inc | | RHS8D3P5832 | RHS8D3034 | RHS8D3033 | 8 | 8-inch between 15-inc | | RHS8D3P5837 | RHS8D3030 | RHS8D3029 | 8 | 8-inch between 15-inc | | JLS6D2P6720 | JLS6D2089A | JLS6D2088A | 6 | 6-inch between 8-inch | | Table 4 | 4.a GIS Gravity Mai | ns and Manholes D | iscrepancy by Ow | ner - List of Gravity | <i>M</i> ains | |--------------|-------------------------|--------------------------|------------------|-----------------------|----------------| | Pipe ID | Manhole
Upstream ID | Manhole
Downstream ID | Туре | Owner By GIS | Proposed Owner | | JLS6E3P3883 | JLS6E3020 | JLS6E3019 | PIPE | PRIVATE | PUBLIC | | PPS4H1P6082 | Private5950 | PrivPump5949 | PIPE | PUBLIC | PRIVATE | | PPS4H1P6083 | Private5951 | Private5950 | PIPE | PUBLIC | PRIVATE | | PPS4H1P6084 | Private5952 | Private5951 | PIPE | PUBLIC | PRIVATE | | ECS7F3P7406 | ECS7F3036 | ECS7F3035 | PIPE | PRIVATE | PUBLIC | | PPS4H1P6081 | PrivPump5949 | ForceMain | FORCED | PUBLIC | PRIVATE | | PPS4H1P6085 | Private5948 | PrivPump5949 | PIPE | PUBLIC | PRIVATE | | PPS4H1P6086 | Private5947 | Private5948 | PIPE | PUBLIC | PRIVATE | | PPS4H1P6087 | Private5953 | PrivPump5949 | PIPE | PUBLIC | PRIVATE | | ECS7F3P7410 | ECS7F3051 | ECS7F3050 | PIPE | PRIVATE | PUBLIC | | PPS5I2TP7444 | PPS5I2T012 | PRIVATE7228 | PIPE | PUBLIC | PRIVATE | | | Confirmed by Mike Wells | 3 | | | | | Table 4.b GIS Gravity Mains and Manholes Discrepancy by Owner - List of Manholes | | | | | | | | | | |--|-----------------------|----------|--------------|----------------|--|--|--|--|--| | Manhole ID | Туре | Basin ID | Owner By GIS | Proposed Owner | | | | | | | DTS5E2092 | MH | DTS5E2 | PUBLIC | PRIVATE | | | | | | | JLS6E3019 | MH | JLS6E3 | PUBLIC | PUBLIC | | | | | | | ECS7E2023 | MH | ECS7E2 | PUBLIC | PRIVATE | | | | | | | PRIVATE5947 | TICK | PPS4H1 | PUBLIC | PRIVATE | | | | | | | PRIVATE5948 | MH | PPS4H1 | PUBLIC | PRIVATE | | | | | | | PrivPump5949 | PUMP | PPS4H1 | PRIVATE | PRIVATE | | | | | | | PRIVATE5950 | MH | PPS4H1 | PUBLIC | PRIVATE | | | | | | | PRIVATE5951 | SSCO | PPS4H1 | PUBLIC | PRIVATE | | | | | | | PRIVATE5952 | TICK | PPS4H1 | PUBLIC | PRIVATE | | | | | | | PRIVATE5953 | PLUG | PPS4H1 | PUBLIC | PRIVATE | | | | | | | PRIVATE6496 | MH | EAS6F2 | PUBLIC | PRIVATE | | | | | | | PRIVATE6497 | MH | EAS6F2 | PUBLIC | PRIVATE | | | | | | | PRIVATE6498 | MH | EAS6F2 | PUBLIC | PRIVATE | | | | | | | PRIVATE6499 | MH | EAS6F2 | PUBLIC | PRIVATE | | | | | | | ECS7F3051 | MH | ECS7F3 | PUBLIC | PUBLIC | | | | | | | ECS7F3036 | MH | ECS7F3 | PUBLIC | PUBLIC | | | | | | | PRIVATE7228 | NODE | PPS5I2T | PRIVATE | PRIVATE | | | | | | | EAS6F1101R | MH | EAS6F1 | PUBLIC | PRIVATE | | | | | | | EAS6F1105R | MH | EAS6F1 | PUBLIC | PRIVATE | | | | | | | | Confirmed by Mike Wel | ls | | | | | | | | | Table 5. GIS and Model Discrepancy by Invert Elevation | | | | | | | | | | | | |--|-------------------------------------|--------------------------------------|--|---|--|---|--|---|---|---|---| | Pipe ID | Manhole
Upstream ID | GIS Upstream Invert
Elevation, ft | Model Upstream Invert
Elevation, ft | Upstream Invert
Elevation Difference, ft | Manhole
Downstream ID | GIS Downstream
Invert
Elevation, ft | Model Downstream Invert
Elevation, ft | Downstream Invert
Elevation Difference, ft | Proposed Upstream Invert
Elevation, ft | Proposed Downstream Invert
Elevation, ft | Status | | DTS6E1TP6702 | DTS6E1T035 | 485.146 | 485.15 | -0.004 | DTS6E1T034 | 483.206 | 483.21 | -0.004 | 485.146 | 483.206 | Different_Invert_In & Out Different_Invert_In & Out | | DTS6E1TP6701 | DTS6E1T034 | 483.206 | 483.21 | -0.004 | DTS6E1T033 | 481.526 | 481.53 | -0.004 | 483.206 | 481.526 | | | DTS5E3P6700 | DTS5E3014 | 487.771 | 487.77 | 0.001 | DTS6E1T032 | 486.056 | 486.06 | -0.004 | 487.771 | 486.056 | Different_Invert_In & Out Different_Invert_In & Out Different Invert In & Out | | DTS6E1TP6698 | DTS6E1T033 | 481.526 | 481.53 | -0.004 | DTS6E1T031 | 479.166 | 479.17 | -0.004 | 481.526 | 479.166 | | | DTS5E3P6697 | DTS6E1T032 | 486.056 | 486.06 | -0.004 | DTS6E1T031 | 479.916 | 479.92 | -0.004 | 486.056 | 479.916 | | | PPS4H4P0278 | PPS4H4044 | 578.26 | 578.4 | -0.14 | PPS4H4043A | 578.06 | 578.16 | -0.1 | 578.26 | 578.06 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | EAS6G4P6202 | EAS6G4094 | 582.4 | 583.1 | -0.7 | EAS6G4089 | 580.9 | 580.8 | 0.1 | 582.4 | 580.9 | | | EAS6G4P6194 | EAS6G4089 | 580.9 | 580.8 | 0.1 | EAS6G4090 | 580.8 | 580.5 | 0.3 | 580.9 | 580.8 | Different_Invert_In & Out Different_Invert_In & Out | | EAS6G4P6196 | EAS6G4090 | 580.7 | 580.5 | 0.2 | EAS6G4086 | 578.9 | 578.8 | 0.1 | 580.7 | 578.9 | | | RHS6C2TP0061 | RHS7C2T002 | 403.1 | 403.14 | -0.04 | RHS6C2T020 | 402.94 | 402.89 | 0.05 | 403.1 | 402.94 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | ACS4C2P0271 | ACS4C2011 | 425.8 | 422.53 | 3.27 | ACS4C2009 | 414.28 | 416.37 | -2.09 | 425.8 | 414.28 | | | ACS4C2P0274 | ACS4C2009 | 414.28 | 416.37 | -2.09 | ACS4C2008 | 405.54 | 410.62 | -5.08 | 414.28 | 405.54 | | | JLS6E3P4088 | JLS6E3075 | 464.93 | 466 | -1.07 | JLS6E3074 | 463.94 | 465.2 | -1.26 | 464.93 | 463.94 | Different_Invert_In & Out Different_Invert_In & Out | | RHS9E1P6893 | RHS9E1032 | 458.17 | 457.24 | 0.93 | RHS9E1031 | 457.92 | 456.48 | 1.44 | 458.17 | 457.92 | | | RHS9E1P6895 | RHS9E1035 | 459.76 | 459.77 | -0.01 | RHS9E1033 | 459.48 | 459.38 | 0.1 | 459.76 | 459.48 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | RHS9E1P6896 | RHS9E1036 | 460.11 | 460.12 | -0.01 | RHS9E1035 | 459.76 | 459.77 | -0.01 | 460.11 | 459.76 | | | RHS9E1P6897 | RHS9E1037 | 460.46 | 460.47 | -0.01 | RHS9E1036 | 460.11 | 460.12 | -0.01 | 460.46 | 460.11 | | | JLS5C2P0368 | JLS5C2050 | 399.64 | 399.38 | 0.26 | JLS5C2049 | 399.33 | 398.79 | 0.54 | 399.64 | 399.33 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | EAS6G4P6258 | EAS6G4075 | 574.5 | 561.17 | 13.33 | EAS6G4074 | 572.9 | 532.53 | 40.37 | 574.5 | 572.9 | | | EAS6G4P6259 | EAS6G4074 | 572.8 | 532.53 | 40.27 | EAS6G4073 | 572.5 | 527.4 | 45.1 | 572.8 | 572.5 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | PPS4G3TP2310 | PPS4G3T004 | 510.01 | 510.02 | -0.01 | PPS4G3T003 | 511.32 | 509.88 | 1.44 | 510.01 | 511.32 | | | DTS6E4P4094 | DTS6E4059 | 492.97 | 493.02 | -0.05 | DTS6E4058 | 490.43 | 490.49 | -0.06 | 492.97 | 490.43 | | | JLS5D1P0639
JLS5D1P0640 | JLS5D1043
JLS5D1042 | 414.55
408.8 | 493.02
414.48
408.89 | 0.07
-0.09 | JLS5D1042
JLS5D1001 | 490.43
408.8
404.61 | 490.49
408.89
404.4 | -0.09
-0.21 | 492.97
414.55
408.8 | 490.43
408.8
404.61 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | JLS5D1P0641 | JLS5D1044 | 420.22 | 420.07 | 0.15 | JLS5D1043 | 414.55 | 414.48 | 0.07 | 420.22 | 414.55 | Different_Invert_In & Out Different_Invert_In & Out | | EAS6G4P0489 | EAS6G4064 | 568.9 | 566.18 | 2.72 | EAS6G4060 | 564.5 | 563.46 | 1.04 | 568.9 | 564.5 | | | EAS6G4P0490 | EAS6G4066 | 569.2 | 568.9 | 0.3 | EAS6G4064 | 568.9 | 566.18 | 2.72 | 569.2 | 568.9 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | PPS5G3P2896 | PPS5G3042 | 531 | 531.1 | -0.1 | PPS5G3041 | 531.1 | 531 | 0.1 | 531 | 531.1 | | | EAS6G4P6183 | EAS6G4134 | 587.1 | 589.2 | -2.1 | EAS6G4100 | 585.3 | 587.3 | -2 | 587.1 | 585.3 | | | RHS9E1P6900 | RHS9E1072 | 478.77 | 475.72 | 3.05 | RHS9E1071 | 476.4 | 473.88 | 2.52 | 478.77 | 476.4 | Different_Invert_In & Out Different_Invert_In & Out | | RHS9E1P6902 | RHS9E1073 | 479.4 | 476.56 | 2.84 | RHS9E1072 | 478.87 | 475.72 | 3.15 | 479.4 | 478.87 | | | RHS9E1P6903 | RHS9E1082 | 482.1 | 479.91 | 2.19 | RHS9E1073 | 479.4 | 476.56 | 2.84 | 482.1 | 479.4 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | RHS9E1P6904 | RHS9E1083 | 483.4 | 481.92 | 1.48 | RHS9E1082 | 482.2 | 479.91 | 2.29 | 483.4 | 482.2 | | | RHS9E1P6906 | RHS9E1103 | 493.9 | 493.65 | 0.25 | RHS9E1102 | 490 | 489.17 | 0.83 | 493.9 | 490 | | | RHS9E1P6907 | RHS9E1104 | 495.5 | 495.38 | 0.12 | RHS9E1103 | 494 | 493.65 | 0.35 | 495.5 | 494 | Different_Invert_In & Out Different_Invert_In & Out | | RHS9E1P6908 | RHS9E1107 | 514.3 | 510.48 | 3.82 | RHS9E1106 | 502.2 | 502.1 | 0.1 | 514.3 | 502.2 | | | STS2H4P0820 | STS2H2001 |
535.94 | 536.8 | -0.86 | STS2H4058 | 536.8 | 535.94 | 0.86 | 535.94 | 536.8 | Different_Invert_In & Out Different_Invert_In & Out Different Invert In & Out | | JLS6E3P6178 | JLS6E3002 | 445.13 | 444.7 | 0.43 | JLS6E3001A | 444.54 | 443.7 | 0.84 | 445.13 | 444.54 | | | DTS6E1TP6866 | DTS5F3T001 | 485.9 | 491.597 | -5.697 | DTS6E1T036 | 485.2 | 490.52 | -5.32 | 485.9 | 485.2 | | | JLS6E3P6117 | JLS6E3045A | 468.16 | 468.61 | -0.45 | JLS6E3045 | 464.9 | 468.061 | -3.161 | 468.16 | 464.9 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | DTS6E4P4235 | DTS6E4022 | 479.013 | 479.01 | 0.003 | DTS6E4017 | 474.603 | 474.6 | 0.003 | 479.013 | 474.603 | | | PPS3H4P1260 | PPS3H4036 | 556.15 | 556.45 | -0.3 | PPS3H4035 | 556.45 | 556.15 | 0.3 | 556.15 | 556.45 | Different_Invert_In & Out Different_Invert_In & Out | | STS3G3P1067 | STS3G3001 | 496.3 | 491.96 | 4.34 | STS3G1T001 | 497 | 490.85 | 6.15 | 496.3 | 497 | | | EAS7H1P6188 | EAS7H1001 | 591.8 | 604.9 | -13.1 | EAS6G4136 | 591.5 | 591.4 | 0.1 | 591.8 | 591.5 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | EAS7H1P6956 | EAS7H1023 | 609.5 | 609.8 | -0.3 | EAS7H1022 | 606.3 | 606.2 | 0.1 | 609.5 | 606.3 | | | EAS7H1P6958 | EAS7H1021 | 602.7 | 601.99 | 0.71 | EAS7H1020 | 597.7 | 597.6 | 0.1 | 602.7 | 597.7 | | | DTS6E1TP6532 | DTS6E1T020 | 464.388 | 464.39 | -0.002 | DTS6E1T019 | 462.267 | 463.33 | -1.063 | 464.388 | 462.267 | Different_Invert_In & Out Different_Invert_In & Out | | RHS7C2TP0057 | RHS8D1001 | 403.66 | 403.62 | 0.04 | RHS7C2T002 | 403.1 | 403.14 | -0.04 | 403.66 | 403.1 | | | JLS5C4TP0087 | RHS6C2T001 | 406.57 | 398.78 | 7.79 | JLS5C4T009 | 404.96 | 398.53 | 6.43 | 406.57 | 404.96 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | STS3G4P1491 | STS3G4026 | 512.58 | 513.03 | -0.45 | STS3G4011 | 513.03 | 512.58 | 0.45 | 512.58 | 513.03 | | | EAS6G4P6257 | EAS6G4076 | 574.8 | 563.22 | 11.58 | EAS6G4075 | 574.6 | 561.17 | 13.43 | 574.8 | 574.6 | | | RHS9E1P6506 | RHS9E1018 | 444.3 | 445.43 | -1.13 | RHS9E1017 | 443.7 | 444.62 | -0.92 | 444.3 | 443.7 | Different_Invert_In & Out Different_Invert_In & Out | | JLS6E3P6118 | JLS6E3046 | 468.53 | 468.061 | 0.469 | JLS6E3045A | 468.16 | 464.9 | 3.26 | 468.53 | 468.16 | | | RHS6D3P4473 | RHS6D3037 | 419.3 | 419.64 | -0.34 | RHS6D3036 | 419.64 | 419.3 | 0.34 | 419.3 | 419.64 | Different_Invert_In & Out Different_Invert_In & Out Different Invert In & Out | | JLS5C2P0367 | JLS5C2049 | 399.53 | 398.79 | 0.74 | JLS5C2048 | 398.87 | 398.2 | 0.67 | 399.53 | 398.87 | | | DTS6E1TP6531 | DTS6E2004 | 463.977 | 464.08 | -0.103 | DTS6E1T019 | 463.327 | 463.33 | -0.003 | 463.977 | 463.327 | | | JLS5D2P2634 | JLS5D2092 | 440.28 | 438.28 | 2 | JLS5D2090 | 442.4 | 437.77 | 4.63 | 440.28 | 442.4 | Different_Invert_In & Out Different_Invert_In & Out | | JLS6D1P2987 | JLS6D1054 | 409.76 | 410.26 | -0.5 | JLS6D1051 | 410.26 | 409.76 | 0.5 | 409.76 | 410.26 | | | PPS4G3TP1894 | PPS4G3T012 | 511.57 | 511.6 | -0.03 | PPS4G3T011 | 511.59 | 511.38 | 0.21 | 511.57 | 511.59 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | JLS6E3P4145 | JLS6E3001A | 444.44 | 444.7 | -0.26 | JLS6E3001 | 444.04 | 443.7 | 0.34 | 444.44 | 444.04 | | | STS2H1P0740 | STS2H1009 | 516.9 | 520.33 | -3.43 | STS2H1008 | 520.43 | 515.19 | 5.24 | 516.9 | 520.43 | | | EAS6G4P6187
JLS6D1P3680 | EAS6G4097
JLS6D1078 | 516.9
583.2
419.42 | 520.33
585.3
420.62 | -3.43
-2.1
-1.2 | EAS6G4094
JLS6D1075 | 520.43
582.5
420.62 | 515.19
583.1
419.42 | -0.6
1.2 | 516.9
583.2
419.42 | 520.43
582.5
420.62 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | DTS6E1TP6722 | DTS6E1T001 | 442.406 | 442.41 | -0.004 | DTS6E1T001 | 441.181 | 441.18 | 0.001 | 442.406 | 441.181 | Different_Invert_In & Out | | DTS6E1TP6721 | | 441.131 | 441.13 | 0.001 | JLS5D4T014 | 440.876 | 440.88 | -0.004 | 441.131 | 440.876 | Different_Invert_In & Out | | EAS7H1P6217
JLS6D1P3027
DTS6E1TP6737 | JLS6D1016
DTS6E1T013 | 622.6
406.51
453.516 | 662.6
406.36
453.52 | -40
0.15
-0.004 | JLS6D1015
DTS6E1T012 | 620.9
406.51
452.736 | 621.3
405.79
452.74 | -0.4
0.72
-0.004 | 622.6
406.51
453.516 | 620.9
406.51
452.736 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | DTS6E1TP6738 | DTS6E1T012 | 452.736 | 452.74 | -0.004 | DTS6E1T011 | 451.056 | 451.06 | -0.004 | 452.736 | 451.056 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | DTS6E1TP6739 | DTS6E1T011 | 451.056 | 451.06 | -0.004 | DTS6E1T010 | 449.786 | 449.79 | -0.004 | 451.056 | 449.786 | | | DTS6E1TP6732 | DTS6E1T010 | 449.786 | 449.79 | -0.004 | DTS6E1T009 | 448.481 | 448.48 | 0.001 | 449.786 | 448.481 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | DTS6E1TP6729 | DTS6E1T009 | 448.481 | 448.48 | 0.001 | DTS6E1T008 | 447.201 | 447.2 | 0.001 | 448.481 | 447.201 | | | DTS6E1TP6728 | DTS6E1T008 | 447.201 | 447.2 | 0.001 | DTS6E1T007 | 446.951 | 446.87 | 0.081 | 447.201 | 446.951 | | | DTS6E1TP6727
DTS6E1TP6726 | DTS6E1T006
DTS6E1T006 | 446.87
446.556 | 446.95
446.56 | -0.08
-0.004 | DTS6E1T007
DTS6E1T006
DTS6E1T005 | 446.556
445.376 | 446.56
445.38 | -0.004
-0.004 | 446.87
446.556 | 446.556
445.376 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | JLS5D3P3055 | JLS5D3093 | 412.61 | 413.66 | -1.05 | JLS5D3087 | 412.61 | 412.66 | -0.05 | 412.61 | 412.61 | Different_Invert_In & Out Different_Invert_In & Out | | RHS8D3P5832 | RHS8D3034 | 429.3 | 429.4 | -0.1 | RHS8D3033 | 429.92 | 429.26 | 0.66 | 429.3 | 429.92 | | | JLS6E3P4298 | JLS6E3066 | 470.69 | 471.314 | -0.624 | JLS6E3071A | 469.5 | 469.782 | -0.282 | 470.69 | 469.5 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | RHS9E1P6890 | RHS9E1029 | 457.46 | 454.19 | 3.27 | RHS9E1028 | 457.26 | 452.2 | 5.06 | 457.46 | 457.26 | | | RHS9E1P6891 | RHS9E1030 | 457.67 | 455.33 | 2.34 | RHS9E1029 | 457.56 | 454.19 | 3.37 | 457.67 | 457.56 | | | RHS9E1P6500 | RHS9E1002 | 441.46 | 441.49 | -0.03 | RHS9E1001 | 441.25 | 441.11 | 0.14 | 441.46 | 441.25 | Different_Invert_In & Out Different_Invert_In & Out | | EAS6G4P6184 | EAS6G4100 | 585.2 | 587.3 | -2.1 | EAS6G4098 | 584.2 | 585.8 | -1.6 | 585.2 | 584.2 | | | DTS5F3TP3035 | DTS5F3T007 | 501.3 | 501.25 | 0.05 | DTS5F3T006 | 499.76 | 499.8 | -0.04 | 501.3 | 499.76 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | JLS6E3P3979 | JLS6E3074 | 463.94 | 465.2 | -1.26 | JLS6E3073 | 463.56 | 464 | -0.44 | 463.94 | 463.56 | | | PPS6H1P3813 | PPS6H1005 | 579.85 | 579.68 | 0.17 | PPS6H1004 | 579.46 | 579.29 | 0.17 | 579.85 | 579.46 | | | ECS7E4P5170 | ECS7E4005 | 512.18 | 514.16 | -1.98 | ECS7E4003 | 514.08 | 513.97 | 0.11 | 512.18 | 514.08 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | RHS9E1P6552 | RHS9E1056 | 467.6 | 468.78 | -1.18 | RHS9E1055 | 467.22 | 467.6 | -0.38 | 467.6 | 467.22 | | | STS3G4P1280
DTS5F3TP3120 | | 507.49
496.02 | 507.77
495.86 | -0.28
0.16 | STS3G4004
DTS5F3T002 | 507.77
494.26 | 507.49
494.41 | 0.28
-0.15 | 507.49
496.02 | 507.77
494.26 | Different_Invert_In & Out Different_Invert_In & Out | | DTS6E1TP7386 | DTS5F3T001A | 488.39 | 494.41 | -6.02 | DTS5F3T001 | 485.9 | 491.595 | -5.695 | 488.39 | 485.9 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | RHS7D3P4874 | RHS7D3034 | 417.62 | 418.65 | -1.03 | RHS7D3049 | 418.65 | 417.62 | 1.03 | 417.62 | 418.65 | | | JLS6E3P4107 | JLS6E3076 | 468.39 | 468.97 | -0.58 | JLS6E3075 | 464.93 | 465.3 | -0.37 | 468.39 | 464.93 | | | DTS6E1TP3223 | DTS6E1T036 | 490.516 | 490.52 | -0.004 | DTS5E3T034 | 484.2 | 487.977 | -3.777 | 490.516 | 484.2 | Different_Invert_In & Out Different_Invert_In & Out | | DTS6E1TP7082 | DTS6E1T022 | 466.963 | 466.96 | 0.003 | DTS6E1T021 | 465.503 | 465.5 | 0.003 | 466.963 | 465.503 | | | DTS6E1TP7083 | DTS6E1T021 | 465.503 | 465.5 | 0.003 | DTS6E1T020 | 464.388 | 464.39 | -0.002 | 465.503 | 464.388 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | DTS5F3TP3084 | DTS5F3T006 | 499.76 | 499.8 | -0.04 | DTS5F3T005 | 498.49 | 498.35 | 0.14 | 499.76 | 498.49 | | | JLS6E3P6529 | JLS6E3072A | 466.3 | 467.453 | -1.153 | JLS6E3072 | 465.8 | 466.83 | -1.03 | 466.3 | 465.8 | | | DTS6E4P4261 | DTS6E4017 | 474.603 | 474.6 | 0.003 | JLS6E3081 | 471.81 | 472.09 | -0.28 | 474.603 | 471.81 | Different_Invert_In & Out | | JLS6E3P4262 | JLS6E3081 | 471.81 | 472.3 | -0.49 | JLS6E3079 | 470.8 | 470.86 | -0.06 | 471.81 | 470.8 | Different_Invert_In & Out | | JLS6E3P4273 | JLS6E3081 | 471.81 | 472.09 | -0.28 | JLS6E3080 | 471.583 | 471.58 | 0.003 | 471.81 | 471.583 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | RHS8D3P5817 | RHS8D3028 | 426.58 | 426.68 | -0.1 | RHS8D3027 | 427.52 | 426.58 | 0.94 | 426.58 | 427.52 | | | DTS6E4P4133 | DTS6E4058 | 490.43 | 490.49 | -0.06 | DTS6E4050 | 487.99 | 488.04 | -0.05 | 490.43 | 487.99 | | | DTS5F3TP2810 | DTS5F3T011 | 506.4 | 506.21 | 0.19 | DTS5F3T010 | 505.16 | 505.11 | 0.05 | 506.4 | 505.16 | Different_Invert_In & Out Different_Invert_In & Out | | EAS7H1P6604 | EAS7H1018 | 593.8 | 593.7 | 0.1 | EAS7H1001 | 591.9 | 591.8 | 0.1 | 593.8 | 591.9 | | | DTS6F3P4702 | DTS6F3035 | 530.73 | 531.01 | -0.28 | DTS6F3036 | 531.01 | 530.73 | 0.28 | 530.73 | 531.01 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | ECS7D3TP5177 | ECS7D3T007 | 437.05 | 437.07 | -0.02 | ECS7D3T006 | 437.12 | 436.67 | 0.45 | 437.05 | 437.12 | | | RHS9E1P6501 | RHS9E1003 | 441.73 | 441.78 | -0.05 | RHS9E1002 | 441.58 | 441.49 | 0.09 | 441.73 | 441.58 | | | RHS9E1P6502
RHS9E1P6503 |
RHS9E1003
RHS9E1004
RHS9E1005 | 442.02
442.41 | 441.76
442.14
442.69 | -0.05
-0.12
-0.28 | RHS9E1002
RHS9E1003
RHS9E1004 | 441.83
442.12 | 441.49
441.78
442.14 | 0.05
-0.02 | 441.73
442.02
442.41 | 441.83
442.12 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | DTS5F3TP5945 | DTS5F3T002 | 494.26 | 494.41 | -0.15 | DTS5F3T001A | 490.1 | 491.595 | -1.495 | 494.26 | 490.1 | Different_Invert_In & Out Different_Invert_In & Out | | DTS5F3TP3111 | DTS5F3T005 | 498.49 | 498.35 | 0.14 | DTS5F3T004 | 496.02 | 496 | 0.02 | 498.49 | 496.02 | | | ECS8E1P5730 | ECS8E1087 | 520.92 | 522.3 | -1.38 | ECS8E1086 | 522.3 | 520.92 | 1.38 | 520.92 | 522.3 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | RHS9E1P6892 | RHS9E1031 | 457.92 | 456.48 | 1.44 | RHS9E1030 | 457.67 | 455.33 | 2.34 | 457.92 | 457.67 | | | DTS6E4P4192 | DTS6E4038 | 485.25 | 485.5 | -0.25 | DTS6E4037 | 482.7 | 482.23 | 0.47 | 485.25 | 482.7 | | | DTS6E4P4164 | DTS6E4050 | 487.96 | 488.04 | -0.08 | DTS6E4038 | 485.25 | 485.5 | -0.25 | 487.96 | 485.25 | Different_Invert_In & Out Different_Invert_In & Out | | JLS6E3P4166 | JLS6E3078 | 469.67 | 470.5 | -0.83 | JLS6E3076 | 468.39 | 465.3 | 3.09 | 469.67 | 468.39 | | | JLS6E3P4180 | JLS6E3003 | 445.75 | 445.3 | 0.45 | JLS6E3002 | 445.23 | 444.7 | 0.53 | 445.75 | 445.23 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | RHS9E1P6509 | RHS9E1025 | 453.4 | 448.46 | 4.94 | RHS9E1024 | 449.1 | 447.7 | 1.4 | 453.4 | 449.1 | | | RHS9E1P6510 | RHS9E1026 | 454.72 | 449.84 | 4.88 | RHS9E1025 | 453.4 | 448.46 | 4.94 | 454.72 | 453.4 | | | RHS9E1P6511 | RHS9E1027 | 456.82 | 450.91 | 5.91 | RHS9E1026 | 545.72 | 449.84 | 95.88 | 456.82 | 545.72 | Different_Invert_In & Out Different_Invert_In & Out | | RHS9E1P6512 | RHS9E1028 | 457.26 | 452.2 | 5.06 | RHS9E1027 | 456.82 | 450.91 | 5.91 | 457.26 | 456.82 | | | PPS6H1P3805 | PPS6H1003 | 578.89 | 578.83 | 0.06 | PPS6H1002 | 579.26 | 578.51 | 0.75 | 578.89 | 579.26 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | EAS7H1P6221 | EAS7H1025 | 615.7 | 615.8 | -0.1 | EAS7H1024 | 613.6 | 613.5 | 0.1 | 615.7 | 613.6 | | | RHS9E1P6563 | RHS9E1055 | 467.22 | 467.6 | -0.38 | RHS9E1054 | 464.9 | 465.37 | -0.47 | 467.22 | 464.9 | | | RHS9E1P6561 | RHS9E1043 | 462.66 | 462.55 | 0.11 | RHS9E1042 | 462.36 | 462.15 | 0.21 | 462.66 | 462.36 | Different_Invert_In & Out Different_Invert_In & Out | | RHS9E1P6577 | RHS9E1042 | 462.36 | 462.15 | 0.21 | RHS9E1041 | 462.03 | 461.71 | 0.32 | 462.36 | 462.03 | | | DTS5F3TP7411 | DTS5F3T002 | 490.1 | 494.41 | -4.31 | DTS5F3T001A | 488.39 | 491.595 | -3.205 | 490.1 | 488.39 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | DTS6E1TP6696 | DTS6E1T036 | 490.516 | 490.52 | -0.004 | DTS6E1T035 | 488.05 | 485.15 | 2.9 | 490.516 | 488.05 | | | DTS6E1TP6733 | DTS6E1T018 | 461.436 | 462.58 | -1.144 | DTS6E1T017 | 460.39 | 460.31 | 0.08 | 461.436 | 460.39 | | | DTS6E1TP6740 | DTS6E1T017 | 460.309 | 460.31 | -0.001 | DTS6E1T016 | 459.519 | 459.52 | -0.001 | 460.309 | 459.519 | Different_Invert_In & Out Different_Invert_In & Out | | DTS6E1TP6735 | DTS6E1T016 | 459.519 | 459.52 | -0.001 | DTS6E1T015 | 454.326 | 454.33 | -0.004 | 459.519 | 454.326 | | | DTS6E1TP6730 | DTS6E1T015 | 454.326 | 454.33 | -0.004 | DTS6E1T014 | 454.216 | 454.22 | -0.004 | 454.326 | 454.216 | Different_Invert_In & Out Different_Invert_In & Out | | DTS6E4P4220 | DTS6E4037 | 482.64 | 482.23 | 0.41 | DTS6E4022 | 479.29 | 479.01 | 0.28 | 482.64 | 479.29 | | | JLS6E3P4224 | JLS6E3079 | 470.8 | 470.86 | -0.06 | JLS6E3078 | 469.67 | 470.5 | -0.83 | 470.8 | 469.67 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | STS2H2P0688 | STS2H2024 | 541.66 | 541.56 | 0.1 | STS2H2022 | 541.56 | 541.24 | 0.32 | 541.66 | 541.56 | | | DTS6E2P6708 | DTS6E2021 | 475.21 | 471.176 | 4.034 | DTS6E2020 | 472.65 | 472.68 | -0.03 | 475.21 | 472.65 | | | DTS6E2P6695 | DTS6E2020 | 472.65 | 472.68 | -0.03 | JLS6E3078 | 469.67 | 470.5 | -0.83 | 472.65 | 469.67 | Different_Invert_In & Out Different_Invert_In & Out | | DTS6E1TP6530 | DTS6E1T019 | 462.267 | 462.27 | -0.003 | DTS6E1T018 | 462.2 | 461.44 | 0.76 | 462.267 | 462.2 | | | STS2G4TP0877 | STS2G4T007 | 502.28 | 502.99 | -0.71 | STS2G4T006 | 502.99 | 502.28 | 0.71 | 502.28 | 502.99 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | DTS6E1TP6736 | DTS6E1T014 | 454.216 | 454.22 | -0.004 | DTS6E1T013 | 543.516 | 453.52 | 89.996 | 454.216 | 543.516 | | | PPS4H4P1612 | PPS4H4020 | 562.14 | 566.45 | -4.31 | PPS4H4019 | 566.6 | 562.34 | 4.26 | 562.14 | 566.6 | | | RHS6D3P4314 | RHS6D3035 | 418.04 | 418.08 | -0.04 | RHS6D3034 | 418.08 | 418.04 | 0.04 | 418.04 | 418.08 | Different_Invert_In & Out | | JLS6E3P4326 | JLS6E3083 | 475.02 | 475.08 | -0.06 | JLS6E3081 | 471.81 | 471.99 | -0.18 | 475.02 | 471.81 | Different_Invert_In & Out | | EAS6G4P6186 | EAS6G4098 | 584.1 | 585.8 | -1.7 | EAS6G4097 | 583.8 | 585.3 | -1.5 | 584.1 | 583.8 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | EAS6F1P7049 | EAS6F1001A | 496.42 | 495.93 | 0.49 | EAS6F1001R | 496.4 | 495.9 | 0.5 | 496.42 | 496.4 | | | DTS5E2P2610 | DTS5E2065 | 535.1 | 522.61 | 12.49 | DTS5E2064 | 519.9 | 521.5 | -1.6 | 535.1 | 519.9 | | | DTS5E2P2610 | DTS5E2065 | 535.1 | 522.61 | 12.49 | DTS5E2064 | 519.9 | 521.5 | -1.6 | 535.1 | 519.9 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | DTS5E2P2615 | DTS5E2066 | 519 | 533.85 | -14.85 | DTS5E2065 | 519.65 | 522.61 | -2.96 | 519 | 519.65 | | | RHS9E1P6490 | RHS9E1001 | 441.15 | 441.11 | 0.04 | RHS8D4075 | 440.93 | 440.9 | 0.03 | 441.15 | 440.93 | | | ACS4D1P6128 | ACS4D1019 | 418.51 | 419.33 | -0.82 | ACS4D1018 | 418.03 | 418.13 | -0.1 | 418.51 | 418.03 | Different_Invert_In & Out Different_Invert_In & Out | | PPS4G3TP7442 | PPS4G3T015 | 513 | 501 | 12 | PPS4G3T014 | 512.5 | 511.95 | 0.55 | 513 | 512.5 | | | PPS4G3TP7443
EAS6F1P3359
DTS6E1TP6699 | EAS6F1012 | 513
495.9
479.116 | 501
497
479.12 | 12
-1.1
-0.004 | PPS4G3T014
EAS6F1001A
DTS6E1T030 | 512.5
496.42
477.833 | 512.15
495.93
477.83 | 0.35
0.49
0.003 | 513
495.9
479.116 | 512.5
496.42
477.833 | Different_Invert_In & Out Different_Invert_In & Out Different Invert In & Out | | ACS4C3TP7626 | ACS4C3T009A | 366.05 | 362.946 | 3.104 | ACS4C3T009 | 363.67 | 363.57 | 0.1 | 366.05 | 363.67 | Different_Invert_In & Out Different_Invert_In & Out | | PPS5F2TP2684 | PPS5F2T001 | 508.15 | 508.16 | -0.01 | DTS5F3T012 | 507.26 | 507.16 | 0.1 | 508.15 | 507.26 | | | DTS5F3TP2881 | DTS5F3T010 | 505.16 | 505.11 | 0.05 | DTS5F3T009 | 504.21 | 503.98 | 0.23 | 505.16 | 504.21 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | DTS5F3TP2988 | DTS5F3T008 | 502.66 | 502.72 | -0.06 | DTS5F3T007 | 501.3 | 501.25 | 0.05 | 502.66 | 501.3 | | | DTS5F3TP2925 | DTS5F3T009 | 504.21 | 503.98 | 0.23 | DTS5F3T008 | 502.66 | 502.72 | -0.06 | 504.21 | 502.66 | | | JLS5C4TP0102 | JLS5C4T013 | 397.63 | 397.76 | -0.13 | JLS5C4T012 | 397.76 | 397.63 | 0.13 | 397.63 | 397.76 | Different_Invert_In & Out Different_Invert_In & Out | | JLS5C2FP7533 | JLS5C2F002 | 386.3601312 | 392.462 | -6.1018688 | JLS5C2F001 | 398.3088048 | 394.223 | 4.0858048 | 386.3601312 | 398.3088048 | | | JLS5C2P7540 | JLS5C2012 | 399.3750648 | 399.376 | -0.0009352 | ACJCLS | 396.501084 | 396.5 | 0.001084 | 399.3750648 | 396.501084 | Different_Invert_In & Out Different_Invert_In & Out | | ACS4C4P1955 | ACS4C4019 | 387.83 | 388.03 | -0.2 | ACS4C4018 | 388.03 | 384.27 | 3.76 | 387.83 | 388.03 | | | JLS5C2P7541 | JLS5C2009A | 394.6933632 | 394.8 | -0.1066368 | ACS4C4023 | 390.8810736 | 390.81 | 0.0710736 | 394.6933632 | 390.8810736 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | JLS5C2FP7539 | ACJCLS | 398.518776 | 382.222 | 16.296776 | TICK7315 | 380.1528576 | 384.685 | -4.5321424 | 398.518776 | 380.1528576 | | | RHS6C2TP0080 | RHS6C2T009 | 402.58 | 405.13 | -2.55 | RHS6C2T008 | 399.87 | 402.58 | -2.71 | 402.58 | 399.87 | | | DTS6E1P3506 | DTS6E1T027 | 478.782 | 478.65 | 0.132 | DTS6E1082 | 478.65 | 472.63 | 6.02 | 478.782 | 478.65 | Different_Invert_In & Out Different_Invert_In & Out | | DTS6E1TP7075 | DTS6E1T028 | 473.722 | 473.72 | 0.002 | DTS6E1T027 | 472.632 | 472.63 | 0.002 | 473.722 | 472.632 | | | DTS6E1TP7077 | DTS6E1T027 | 472.632 | 472.63 | 0.002 | DTS6E1T026 | 472.613 | 472.61 | 0.003 | 472.632 | 472.613 | Different_Invert_In & Out Different_Invert_In & Out | | DTS6E1P2758 | DTS6E1020 | 468.48 | 468.8 | -0.32 | DTS6E1019 | 468.14 | 468.11 | 0.03 | 468.48 | 468.14 | | | Table 5. GIS and Model Discrepancy by Invert Elevation | | | | | | | | | | | | |--|---------------------------------------|--------------------------------------|-----------------------------|---|--|---|--|---|---|---|---| | Pipe ID | Manhole
Upstream ID | GIS Upstream Invert
Elevation, ft | Elevation, ft | Upstream Invert
Elevation Difference, ft | Manhole
Downstream ID | GIS Downstream
Invert
Elevation, ft | Model Downstream Invert
Elevation, ft | Downstream Invert
Elevation Difference, ft | Proposed Upstream Invert
Elevation, ft | Proposed Downstream Invert
Elevation, ft | Status | | DTS6E1TP6718 | DTS6E1T003 | 442.931 | 442.93 | 0.001 | DTS6E1T002 | 442.406 | 442.41 | -0.004 | 442.931 | 442.406 |
Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | JLS5D3P7618 | JLS5D3114 | 410.13 | 410.085 | 0.045 | JLS5D3084 | 409.46 | 409.4 | 0.06 | 410.13 | 409.46 | | | ACS4C3TP7627 | ACS4C3T009B | 366.05 | 364.902 | 1.148 | ACS4C3T009A | 363.67 | 363.92 | -0.25 | 366.05 | 363.67 | | | DTS5E3P2846
DTS5E3P3127 | DTS5E3001
DTS5E3017 | 471.14
497.45 | 471.5
497.14 | -0.36
0.31
0.27 | DTS6E1079
DTS5E3016 | 471.5
497.14 | 471.14
494.36 | 0.36
2.78 | 471.14
497.45
498.41 | 471.5
497.14
497.45 | Different_Invert_In & Out
Different_Invert_In & Out | | DTS5E3P3067
DTS5E3P2902
DTS5E3P2861 | DTS5E3027
DTS5E3032
DTS5E3033 | 498.41
515.23
516.88 | 498.14
514.97
516.68 | 0.26
0.2 | DTS5E3017
DTS5E3031
DTS5E3032 | 497.45
510.99
515.23 | 497.14
512
514.97 | 0.31
-1.01
0.26 | 515.23
516.88 | 510.99
515.23 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | DTS5E3P2944 | DTS5E3031 | 510.89 | 510.55 | 0.34 | DTS5E3030 | 505.93 | 507.55 | -1.62 | 510.89 | 505.93 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | JLS6E3P4436 | JLS6E3086 | 487.5 | 482.82 | 4.68 | JLS6E3085 | 482.82 | 479.9 | 2.92 | 487.5 | 482.82 | | | JLS6E3P4468 | JLS6E3087 | 482.82 | 484.5 | -1.68 | JLS6E3086 | 479.9 | 482.82 | -2.92 | 482.82 | 479.9 | | | PPS5F2TP2625
PPS5F2TP6057 | PPS5F2T001A
PPS5F2T002 | 509.01
508.72 | 509.05
509.05 | -0.04
-0.33
-2.847 | PPS5F2T001
PPS5F2T001A | 508.15
509.01
488.5 | 508.16
508.16 | -0.01
0.85
-3.68 | 509.01
508.72
492.18 | 508.15
509.01
488.5 | Different_Invert_In & Out Different_Invert_In & Out | | DTS6E2P5956
JLS5D4TP6705
JLS5D4TP6723 | DTS6E2043
JLS5D4T013
JLS5D4T014 | 492.18
440.476
440.806 | 495.027
440.48
440.81 | -0.004
-0.004 | DTS6E2050
JLS5E3T001
JLS5D4T013 | 440.226
440.636 | 492.18
440.23
440.64 | -0.004
-0.004 | 440.476
440.806 | 440.226
440.636 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | JLS5D2P7381 | JLS5D2126 | 446.88 | 446.85 | 0.03 | DTS5E3T003 | 446.26 | 446.8 | -0.54 | 446.88 | 446.26 | Different_Invert_In & Out Different_Invert_In & Out Different Invert In & Out | | DTS6E2P5947 | DTS6E2039 | 488.05 | 488.87 | -0.82 | DTS6E2038 | 488.87 | 488.05 | 0.82 | 488.05 | 488.87 | | | PPS5G4P2982 | PPS5G4074 | 542.04 | 542.33 | -0.29 | PPS5G4007 | 541.7 | 541.4 | 0.3 | 542.04 | 541.7 | | | PPS5G4P6320 | PPS5G4001 | 530.43 | 530.54 | -0.11 | PPS5G4001A | 529.9 | 527.52 | 2.38 | 530.43 | 529.9 | Different_Invert_In & Out Different_Invert_In & Out Different_Invert_In & Out | | PPS5G4P2304 | PPS5G4002 | 531.89 | 531.77 | 0.12 | PPS5G4001 | 530.43 | 530.54 | -0.11 | 531.89 | 530.43 | | | PPS5G4P2492 | PPS5G4003 | 535.21 | 535.01 | 0.2 | PPS5G4002 | 531.89 | 531.77 | 0.12 | 535.21 | 531.89 | | | PPS5G4P7684 | PPS5G4007 | 541.7 | 541.4 | 0.3 | PPS5G4006A | 540.76 | 539.83 | 0.93 | 541.7 | 540.76 | Different_Invert_In & Out | | STS3G2P1308 | STS3G2057 | 521.56 | 521.48 | 0.08 | STS3G2056 | 520.64 | 520.74 | -0.1 | 521.56 | 520.64 | Different_Invert_In & Out | | STS3G2P1304 | STS3G2056 | 520.74 | 520.64 | 0.1 | STS3G2055 | 519.44 | 519.54 | -0.1 | 520.74 | 519.44 | Different_Invert_In & Out | | PPS5G4P7563 | PPS5G4008 | 542.44 | 542.38 | 0.06 | PPS5G4075 | 542.38 | 542.44 | -0.06 | 542.44 | 542.38 | Different_Invert_In & Out | | DTS5E2P2545 | DTS5E2055 | 510.5 | 511.8 | -1.3 | DTS5E2053 | 511.8 | 510.5 | 1.3 | 510.5 | 511.8 | Different_Invert_In & Out | | PPS4G1TP1604 | PPS4G1T019 | 525.89 | 525.99 | -0.1 | PPS4G1T018 | 525.99 | 525.89 | 0.1 | 525.89 | 525.99 | Different_Invert_In & Out Different_Invert_In & Out Different Invert In & Out | | RHS8D1P0054 | RHS8D1139 | 406.5 | 403.91 | 2.59 | RHS8D1001 | 403.83 | 403.62 | 0.21 | 406.5 | 403.83 | | | JLS5C4TP0089 | JLS5C4T009 | 404.96 | 398.53 | 6.43 | JLS5C4T008 | 403.37 | 398.26 | 5.11 | 404.96 | 403.37 | | | JLS5C4TP0091 | JLS5C4T008 | 403.37 | 398.26 | 5.11 | JLS6D1012 | 397.92 | 398.04 | -0.12 | 403.37 | 397.92 | Different_Invert_In & Out Different invert Out Different invert Out | | EAS6G4P6206 | EAS6G4084 | 578.2 | 578.2 | 0 | EAS6G4082 | 577.2 | 577.1 | 0.1 | 578.2 | 577.2 | | | EAS6G4P0463 | EAS6G4002 | 555.57 | 555.57 | 0 | EAS6G4001 | 553.45 | 553.62 | -0.17 | 555.57 | 553.45 | | | EAS6G4P0467
EAS6G4P0468 | EAS6G4007A
EAS6G4007 | 561.6
561.1 | 561.6
561.1 | 0 | EAS6G4007
EAS6G4006 | 561.1
558 | 561.2
558.1 | -0.1
-0.1 | 561.6
561.1 | 561.1
558 | Different invert Out Different invert Out | | STS2H2P0159 | STS2H2039 | 545.59 | 545.59 | 0 | STS2H2037 | 544.95 | 545.05 | -0.1 | 545.59 | 544.95 | Different invert Out Different invert Out Different invert Out | | STS2H2P0163 | STS2H2034 | 544.43 | 544.43 | 0 | STS2H2029 | 544.05 | 544.15 | -0.1 | 544.43 | 544.05 | | | JLS6E3P4403 | JLS6E3085 | 479.9 | 479.9 | 0 | JLS6E3083 | 475.02 | 475.08 | -0.06 | 479.9 | 475.02 | | | ACS4D1P6134
RHS8D3P5803
STS2H1P0767 | ACS4D1007
RHS8D3027
STS2H1023 | 408.5
426.58
525.41 | 408.5
426.58
525.41 | 0 0 | ACS4D1005
RHS8D3026
STS2H1022 | 407.89
436.38
524.11 | 407.76
426.38
524.44 | 0.13
10
-0.33 | 408.5
426.58
525.41 | 407.89
436.38
524.11 | Different invert Out Different invert Out Different invert Out | | JLS6E3P4353 | JLS6E3082 | 473.7 | 473.7 | 0 | JLS6E3066 | 470.69 | 471.314 | -0.624 | 473.7 | 470.69 | Different invert Out | | ACS4D1P6133 | ACS4D1015 | 411.21 | 411.21 | | ACS4D1008 | 409.83 | 408.5 | 1.33 | 411.21 | 409.83 | Different invert Out | | ACS4C2P0267 | ACS4C2012 | 426.64 | 426.64 | 0 | ACS4C2011 | 425.8 | 422.53 | 3.27 | 426.64 | 425.8 | Different invert Out Different invert Out Different invert Out | | RHS9E1P6894 | RHS9E1033 | 459.38 | 459.38 | 0 | RHS9E1032 | 458.17 | 457.24 | 0.93 | 459.38 | 458.17 | | | RHS9E1P6898 | RHS9E1038 | 460.73 | 460.73 | 0 | RHS9E1037 | 460.46 | 460.47 | -0.01 | 460.73 | 460.46 | | | JLS5C2P0370 | JLS5C2051 | 399.94 | 399.94 | 0 | JLS5C2050 | 399.64 | 399.38 | 0.26 | 399.94 | 399.64 | Different invert Out Different invert Out Different invert Out | | RHS9E1P6911 | RHS9E1084 | 484.68 | 484.68 | 0 | RHS9E1083 | 483.5 | 481.92 | 1.58 | 484.68 | 483.5 | | | STS2G4P0175 | STS2G4052 | 499.89 | 499.89 | 0 | STS2G4051 | 498.19 | 498.29 | -0.1 | 499.89 | 498.19 | | | STS3G4P1488
JLS5D3TP0100
EAS7H1P6957 | STS3G4027
JLS5D3T002
EAS7H1022 | 513.91
398.68
606.2 | 513.91
398.68
606.2 | 0 0 | STS3G4026
JLS5D3T001
EAS7H1021 | 521.58
398.46
602.8 | 513.03
398.13
601.99 | 8.55
0.33
0.81 | 513.91
398.68
606.2 | 521.58
398.46
602.8 | Different invert Out Different invert Out Different invert Out | | STS2H2P0152
EAS6G4P6181 | STS2H2048
EAS6G4136 | 547.36
591.4 | 547.36
591.4 | 0 | STS2H2046
EAS6G4134 | 546.76
587.2 | 546.86
589.2 | -0.1
-2 | 547.36
591.4 | 546.76
587.2 | Different invert Out Different invert Out | | PPS4H4P0292 | PPS4H4043 | 576.56 | 576.56 | 0 | PPS4H4042A | 576.06 | 576.09 | -0.03 | 576.56 | 576.06 | Different invert Out Different invert Out Different invert Out | | RHS9E1P6909 | RHS9E1108 | 520.73 | 520.73 | 0 | RHS9E1107 | 514.4 | 510.48 | 3.92 | 520.73 | 514.4 | | | JLS5D3P3130 | JLS5D3095 | 414.55 | 414.55 | 0 | JLS5D3093 | 412.61 | 413.66 | -1.05 | 414.55 | 412.61 | | | DTS6E4P4239 | DTS6E4039 | 487.39 | 487.39 | 0 | DTS6E4027 | 484.51 | 484.78 | -0.27 | 487.39 | 484.51 | Different invert Out Different invert Out Different invert Out | | DTS7F1P4747 | DTS7F1026 | 519.69 | 519.69 | 0 | DTS7F1025 | 518.98 | 519.16 | -0.18 | 519.69 | 518.98 | | | DTS6E2P3839 | DTS6E2005 | 465.33 | 465.33 | 0 | DTS6E2004 | 464.077 | 463.98 | 0.097 | 465.33 | 464.077 | | | STS2G4P0181
RHS8D3P5835
JLS5D1TP0377 | STS2G4062
RHS8D3032
JLS5D1T003 | 507.02
429.04
403.71 | 507.02
429.04
403.71 | 0 0 | STS2G4061
RHS8D3031
JLS5D1T002 | 505.96
429.09
402.82 | 506.58
428.76
403.3 | -0.62
0.33
-0.48 | 507.02
429.04
403.71 | 505.96
429.09
402.82 | Different invert Out Different invert Out Different invert Out Different invert Out | | EAS7H1P6959
RHS8D1P0056 | EAS7H1020
RHS8D1015 | 597.6
404.08 | 597.6
404.08 | 0 | EAS7H1019
RHS8D1001 | 594
403.83 | 593.8
403.62 | 0.2
0.21 | 597.6
404.08 | 594
403.83 | Different invert Out Different invert Out | | RHS9E1P6914 | RHS9E1105 | 497.1 | 497.1 | 0 | RHS9E1104 | 495.5 | 495.38 | 0.12 | 497.1 | 495.5 | Different invert Out Different invert Out Different invert Out | | RHS9E1P6915 | RHS9E1106 | 502.1 | 502.1 | 0 | RHS9E1105 | 497.2 | 497.1 | 0.1 | 502.1 | 497.2 | | | JLS5D1P0643 | JLS5D1134 | 421.84 | 421.84 | 0 | JLS5D1044 | 420.22 | 420.07 | 0.15 | 421.84 | 420.22 | | | EAS6G4P6255
EAS6G4P6256
RHS9E1P6507 | EAS6G4078
EAS6G4077
RHS9E1019 | 576
575.5
447.7 | 576
575.5
447.7 | 0 0 0 | EAS6G4077
EAS6G4076
RHS9E1018 | 575.6
574.9
444.3 | 575.5
574.71
445.43 | 0.1
0.19
-1.13 | 576
575.5
447.7 | 575.6
574.9
444.3 | Different invert Out Different invert Out Different invert Out | | DTS5F3TP7021
EAS6F1P3919
JLS6E3P4234 | PPS5F4001
EAS6F1138
JLS6E3071 | 506.51
0
468.99 | 506.51
501.96
468.99 | 0 0 | DTS5F3T011
EAS6F1137 | 506.4
499.51
466.3 | 506.21
499.28
467.453 | 0.19
0.23 | 506.51
0
468.99 | 506.4
499.51
466.3 | Different invert Out Different invert Out Different invert Out | | DTS6E2P6533
EAS6G4P0471 | DTS6E2003
EAS6G4011 | 462.2
563.2 | 462.2
563.2 | 0 | JLS6E3072A
DTS6E1T018
EAS6G4009 | 461.436
562.8 | 461.44
562.9 | -1.153
-0.004
-0.1 | 462.2
563.2 | 461.436
562.8 | Different invert Out Different invert Out | | EAS6G4P0472 | EAS6G4012 | 565.2 | 565.2 | 0 | EAS6G4011 | 563.2 | 563.3 | -0.1 |
565.2 | 563.2 | Different invert Out Different invert Out Different invert Out | | EAS6G4P0473 | EAS6G4017 | 566.3 | 566.3 | 0 | EAS6G4012 | 565.2 | 565.3 | -0.1 | 566.3 | 565.2 | | | STS2G4P0188 | STS3G2001 | 500.4 | 500.4 | 0 | STS2G4051 | 500.18 | 498.29 | 1.89 | 500.4 | 500.18 | | | STS3G1TP1041 | STS3G1T002 | 489.94 | 489.94 | 0 | STS3G1T001 | 497 | 487.6 | 9.4 | 489.94 | 497 | Different invert Out Different invert Out Different invert Out | | EAS6G4P0481 | EAS6G4056 | 561.2 | 561.2 | 0 | EAS6G4053 | 599.92 | 559.59 | 40.33 | 561.2 | 599.92 | | | EAS7H1P6215 | EAS7H1037 | 620.8 | 620.8 | 0 | EAS7H1026 | 617.7 | 618.1 | -0.4 | 620.8 | 617.7 | | | JLS5C2P0325
JLS6E3P4297 | JLS5C2015
JLS6E3080 | 403.02
471.42 | 403.02
471.42 | 0 | JLS5C2014
JLS6E3066 | 401.65
470.69 | 401.53
471.314 | 0.12
-0.624 | 403.02
471.42 | 401.65
470.69 | Different invert Out Different invert Out | | ACS4C3TP2353 | STUB1857 | 0 | 356 | 0 | ACS4C3T001 | 357.28 | 355.145 | 2.135 | 0 | 357.28 | Different invert Out Different invert Out Different invert Out | | RHS8D4P0603 | RHS8D4023 | 456.5 | 456.5 | 0 | RHS8DA016 | 448.56 | 448.66 | -0.1 | 456.5 | 448.56 | | | RHS8D4P0607 | RHS8D4007 | 436.49 | 436.49 | 0 | RHS8D4006 | 433.83 | 435.93 | -2.1 | 436.49 | 433.83 | | | RHS8D4P0610
PPS4H3P1777
DTS6E1P6000 | RHS8DA016
PPS4H3022
DTS6E1021 | 448.56
542.61
471.09 | 448.56
542.61
471.09 | 0 0 0 | RHS8D4013
PPS4H3020
DTS6E1020 | 447.5
542.77
468.8 | 447.6
542.34
468.48 | -0.1
0.43
0.32 | 448.56
542.61
471.09 | 447.5
542.77
468.8 | Different invert Out Different invert Out Different invert Out | | EAS6F2P6871
DTS6E1TP7074
DTS6E2P7131 | EAS6F2001
DTS6E1T029
DTS6E2009 | 531.3
474.49
475.8 | 531.3
474.49
475.8 | 0 0 0 | EAS6F2001A
DTS6E1T028
DTS6E1T024 | 530.94
473.722
475.08 | 530.05
473.72
469.35 | 0.89
0.002
5.73 | 531.3
474.49
475.8 | 530.94
473.722
475.08 | Different invert Out Different invert Out Different invert Out | | DTS6E1TP7081 | DTS6E1T023 | 469 | 469 | 0 | DTS6E1T022 | 466.963 | 466.96 | 0.003 | 469 | 466.963 | Different invert Out | | ECS7E1P4953 | ECS7E1051 | 489.3 | 489.3 | | ECS7E1050 | 490.1 | 489.08 | 1.02 | 489.3 | 490.1 | Different invert Out | | DTS5E3P5943 | DTS5E3015 | 0 | 492.76 | 0 | DTS5E3014 | 487.841 | 489.88 | -2.039 | 0 | 487.841 | Different invert Out | | DTS6E4P4264 | DTS6E4023 | 482.24 | 482.24 | 0 | DTS6E4022 | 482.34 | 480.31 | 2.03 | 482.24 | 482.34 | Different invert Out | | EAS6G4P0461 | AEC5729 | 560 | 560 | 0 | EAS6G4001 | 553.62 | 553.45 | 0.17 | 560 | 553.62 | Different invert Out | | RHS7D3P4836
JLS6D1P3059
PPS5H1P2812 | RHS7D3034
JLS6D1051
PPS5H1075 | 417.62
409.76
559.01 | 417.62
409.76
559.01 | 0 0 0 | RHS7D3033
JLS6D1050
PPS5H1047 | 419.26
411.73
560.9 | 417.26
408.75
558.98 | 2
2.98
1.92 | 417.62
409.76
559.01 | 419.26
411.73
560.9 | Different invert Out Different invert Out Different invert Out | | RHS9E1P6504 | RHS9E1016 | 443 | 443 | 0 | RHS9E1005 | 442.74 | 442.69 | 0.05 | 443 | 442.74 | Different invert Out Different invert Out Different invert Out | | DTS6E4P4165 | DTS6E4038 | 485.5 | 485.5 | 0 | DTS6E2072 | 484.11 | 484.21 | -0.1 | 485.5 | 484.11 | | | JLS5D1TP0429 | JLS5D1T001 | 402.7 | 402.7 | 0 | JLS5D3T008 | 402.02 | 402.16 | -0.14 | 402.7 | 402.02 | | | RHS9E1P6571 | RHS9E1067 | 472.2 | 472.2 | 0 | RHS9E1056 | 467.6 | 468.78 | -1.18 | 472.2 | 467.6 | Different invert Out | | JLS4D4TP1870 | JLS4D4T004 | 410.69 | 410.69 | | JLS4D4T003 | 423.68 | 410.54 | 13.14 | 410.69 | 423.68 | Different invert Out | | ECS7D3TP5113 | ECS7D3T005 | 436.32 | 436.32 | 0 | ECS7D3T004 | 436.79 | 435.99 | 0.8 | 436.32 | 436.79 | Different invert Out Different invert Out Different invert Out | | RHS8D3P5824 | RHS8D3036 | 430.16 | 430.16 | 0 | RHS8D3035 | 449.87 | 429.87 | 20 | 430.16 | 449.87 | | | EAS7H1P6220 | EAS7H1026 | 616.9 | 616.9 | 0 | EAS7H1025 | 518.7 | 615.8 | -97.1 | 616.9 | 518.7 | | | EAS7H1P6222 | EAS7H1024 | 613.5 | 613.5 | 0 | EAS7H1023 | 609.6 | 609.8 | -0.2 | 613.5 | 609.6 | Different invert Out Different invert Out Different invert Out | | EAS6F1P5982 | EAS6F1140 | 0 | 506.59 | 0 | EAS6F1139 | 503.92 | 504.08 | -0.16 | 0 | 503.92 | | | DTS6E2P4223 | DTS6E2069 | 0 | 474.994 | 0 | JLS6E3079 | 470.8 | 470.86 | -0.06 | 0 | 470.8 | | | DTS6E4P4226
STS2H4P0995
STS3G3P1099 | DTS6E4039
STS2H4012
STS3G3002 | 487.39
529.16
493.08 | 487.39
529.16
493.08 | 0 0 0 | DTS6E4038
STS2H4010
STS3G3001 | 485.25
531.14
496.3 | 485.5
528.04
491.96 | -0.25
3.1
4.34 | 487.39
529.16
493.08 | 485.25
531.14
496.3 | Different invert Out Different invert Out Different invert Out | | STS2H1P0888 PPS5G3P2372 PPS4F4P1752 | STS2H1004
PPS5G3015
PPS4F4104 | 514.6
523.82
509.7 | 514.6
523.82
509.7 | 0 0 | STS2G4T011
PPS5G3002
PPS4F4105 | 514.6
523.89
507.91 | 513.6
522.9
507.97 | 1
0.99 | 514.6
523.82
509.7 | 514.6
523.89
507.91 | Different invert Out Different invert Out Different invert Out Different invert Out | | DTS6E4P4325
RHS8D4P0587 | DTS6E4018
RHS8D4003 | 479.67
434.86 | 479.67
434.86 | 0 | JLS6E3083
RHS8D4002 | 475.02
434.26 | 475.08
434.25 | -0.06
-0.06
0.01 | 479.67
434.86 | 475.02
434.26 | Different invert Out
Different invert Out | | STS3G3P1199 | STS3G3075 | 505.3 | 505.3 | 0 | STS3G3072 | 506.55 | 503.88 | 2.67 | 505.3 | 506.55 | Different invert Out Different invert Out Different invert Out | | ECS8E4P6415 | ECS8E4001 | 519.98 | 519.98 | 0 | ECS8E3065 | 517.52 | 519.06 | -1.54 | 519.98 | 517.52 | | | PPS4G3P1748 | PPS4G3016 | 512.78 | 512.78 | 0 | PPS4G3T015 | 513 | 512.5 | 0.5 | 512.78 | 513 | | | PPS4G3TP1715 | PPS4G3T017 | 0 | 513.08 | 0 | PPS4G3T016 | 513.08 | 513 | 0.08 | 0 | 513.08 | Different invert Out Different invert Out Different invert Out | | ACS4C3TP1848 | ACS4C3T009 | 363.57 | 363.57 | 0 | ACS4C3T008 | 365.92 | 363.04 | 2.88 | 363.57 | 365.92 | | | EAS6F2P2915 | EAS6F2087 | 510.46 | 510.46 | 0 | DTS5F3T009 | 507.21 | 503.98 | 3.23 | 510.46 | 507.21 | | | STS2G4TP1011
JLS5C2P0113
ACS4C4P0337 | STS2G4T001
JLS5C2048
JLS5C2012 | 495.4
398.87
399.56 | 495.4
398.87
399.56 | 0 0 | STS3G1T006
JLS5C2079
ACS4C4051A | 505.33
399.60144
397.61 | 494
397.87
396.8 | 11.33
1.73144
0.81 | 495.4
398.87
399.56 | 505.33
399.60144
397.61 | Different invert Out Different invert Out Different invert Out | | ECS8E4P6414 | ECS8E4099 | 0 | 520.96 | 0 | ECS8E4001 | 520.08 | 519.98 | 0.1 | 0 | 520.08 | Different invert Out | | DTS6E1TP6724 | DTS6E1T004 | 444.24 | 444.24 | | DTS6E1T003 | 441.95 | 443.65 | -1.7 | 444.24 | 441.95 | Different invert Out | | DTS6F3P6524 | DTS6F3024A | 0 | 512.78 | 0 | DTS6F3024B | 512.78 | 512.068 | 0.712 | 0 | 512.78 | Different invert Out Different invert Out Different invert Out | | JLS5D3P2967 | JLS5D3086 | 0 | 411.71 | 0 | JLS5D3084A | 411.17 | 410.81 | 0.36 | 0 | 411.17 | | | RHS6D3P4281 | RHS6D3034 | 418.08 | 418.08 | 0 | RHS6D3T010 | 422.42 | 417 | 5.42 | 418.08 | 422.42 | | | DTS6E2P3648 | DTS6E2051 | 0 | 495.027 | 0 | DTS6E2050 | 488.5 | 495.027 | -6.527 | 0 | 488.5 | Different invert Out Different invert Out Different invert Out | | PPS4H4P7623 | PPS4H4014 | 556.48 | 556.48 | 0 | PPS4H4013A | 556.1 | 555.35 | 0.75 | 556.48 | 556.1 | | | ACS4C3TP6016 | ACS4C3T010 | 366.05 | 366.05 | 0 | ACS4C3T009B | 363.67 | 364.907 | -1.237 | 366.05 | 363.67 | | | DTS5E3P7558 DTS5E3P2889 DTS5E3P6001 | DTS5E3083A
DTS6E1079
DTS5E3085 | 0
471.5 | 486.41
471.5
471.39 | 0 0 | DTS5E3083
DTS6E1021
DTS6E1032 | 481.77
469.88
468.58 | 480.52
469.98
467.28 | 1.25
-0.1
1.3 | 0
471.5 | 481.77
469.88
468.58 | Different invert Out Different invert Out Different invert Out Different invert Out | | DTS5E3P3052 | DTS5E3029 | 501.55 | 501.55 | 0 | DTS5E3028 | 497.14 | 498.48 | -1.34 | 501.55 | 497.14 | Different invert Out | | ACS4C2P0223 | ACS4C2096 | 0 | 428 | | ACS4C2068 | 426.43 | 426.5 | -0.07 | 0 | 426.43 | Different invert Out | | JLS6E3P4483
AEC4059
DTS6E2TP5957 | JLS6E3088
AEC3574
DTS5E3T030 | 484.57
0
0 | 484.57
531.43
488.56 | 0
0
0 | JLS6E3087
AEC3571
DTS5E3T029A | 487.5
527.65
484.64 | 484.5
527.75
485.084 | -0.1
-0.444 | 484.57
0
0 | 487.5
527.65
484.64 | Different invert Out Different invert Out Different invert Out | | PPS6G1P3297 | PPS6G1045 | 530.43 | 530.43 | 0 | PPS6G1044 | 540.95 | 529.78 | 11.17 | 530.43 | 540.95 | Different invert Out Different invert Out Different invert Out | | RHS9E1P6569 | RHS9E1045 | 462.99 | 462.99 | 0 | RHS9E1043 | 462.66 | 462.55 | 0.11 | 462.99 | 462.66 | | | PPS5I2TP2071 | PPS5I2T010 | 572.94 | 572.94 | 0 | PPS5I2T009 | 579.2 | 571 | 8.2 | 572.94 | 579.2 | | | DTS6E1P2754 | DTS6E1028 | 0 | 456.01 | 0 | DTS6E1027 | 450.92 | 453.63 | -2.71 | 0 | 450.92 | Different invert Out | | JLS5D2P2583 | JLS5D2001A | 426.52 | 426.52 | | JLS5D2004 | 425.95 | 426.05 | -0.1 | 426.52 | 425.95 | Different invert Out | | JLS5D4TP5989 | JLS5D4T009 | 432.6 | 432.6 | 0 | JLS5D4T008 | 432.7 | 431.03 | 1.67 | 432.6 | 432.7 | Different invert Out Different invert Out Different invert Out | | JLS5D2P2876 | JLS5D2117 | 446.6 | 446.6 | 0 | DTS5E3T002 | 446.07 | 446.55 | -0.48 | 446.6 | 446.07 | | | JLS5D2P2883 | DTS6E1012 | 451.49 | 451.49 | 0 | JLS5D2126 | 446.88 | 447.61 | -0.73 | 451.49 | 446.88 | | | DTS5E3TP2799
ACS5C4P6300
RHS7D3P4967 | DTS5E3T007
ACS5C1022
RHS7D3042 | 451.08
358.11
0 | 451.08
358.11
411.96 | 0 0 | DTS5E3T006
ACS5C4001
RHS7D3041 | 453.09
356.68
410.73 | 449.11
357.03
411.45 | 3.98
-0.35
-0.72 | 451.08
358.11
0 | 453.09
356.68
410.73 | Different invert Out Different invert Out Different invert Out |
| PPS5G4P2587
PPS5G4P2652
PPS5G4P7685 | PPS5G4004
PPS5G4005
PPS5G4006 | 536.83
538.25
539.83 | 536.83
538.25
539.83 | 0 0 | PPS5G4003
PPS5G4004
PPS5G4005A | 535.21
536.9
539.03 | 535.01
536.83
538.25 | 0.2
0.07
0.78 | 536.83
538.25
539.83 | 535.21
536.9
539.03 | Different invert Out
Different invert Out | | PPS5F2TP2588
PPS5H2TP2113 | PPS5F2T003
PPS5H2T022 | 516.47
533.5 | 516.47
533.5 | 0 | PPS5F2T003A
PPS5H2T007R | 515.65
530.42 | 516.09
530.53 | -0.44
-0.11 | 516.47
533.5 | 515.65
530.42 | Different invert Out Different invert Out Different invert Out | | DTS6E2P5967 | EAS6F1136 | 498.89 | 498.89 | 0 | DTS6E2068A | 493.25 | 492.86 | 0.39 | 498.89 | 493.25 | Different invert Out Different invert Out Different Invert In | | RHS6C2TP0085 | RHS6C2T002 | 399.05 | 399.05 | 0 | RHS6C2T001 | 406.57 | 398.78 | 7.79 | 399.05 | 406.57 | | | EAS6F1P3730 | EAS6F1137 | 499.51 | 499.28 | 0.23 | EAS6F1136 | 0 | 498.92 | 0 | 499.51 | 0 | | | RHS8D3P5791
RHS9E1P6505
JLS6E3P4352 | RHS8D3026
RHS9E1017
JLS6E3083 | 436.38
443.7
475.02 | 426.38
444.62
475.08 | 10
-0.92
-0.06 | RHS8D3025
RHS9E1016
JLS6E3082 | 426.15
443.4
0 | 426.15
443.4
473.7 | 0 0 | 436.38
443.7
475.02 | 426.15
443.4
0 | Different Invert In Different Invert In Different Invert In | | JLS5D3P3051
RHS6C2TP0060 | JLS5D3087
RHS6C2T020 | 475.02
412.61
402.94 | 475.08
412.66
402.89 | -0.05
-0.05 | JLS5D3086
RHS6C2T019 | 0
402.49 | 411.71
402.49 | 0 0 | 475.02
412.61
402.94 | 0
402.49 | Different Invert In Different Invert In | | | | | | | | | | | | | | | | Table 5. GIS and Model Discrepancy by Invert Elevation | | | | | | | | | | | |-----------------------------|--|-------------------------|-------------------------|-----------------------------------|----------------------------|--------------------------|-------------------------|--------------------------|--------------------------|----------------------------|---| | | Manhole | GIS Upstream Invert | Model Upstream Invert | Upstream Invert | Manhole | GIS Downstream
Invert | Model Downstream Invert | Downstream Invert | Proposed Upstream Invert | Proposed Downstream Invert | | | Pipe ID
ACS4C2P0276 | Upstream ID
ACS4C2008 | Elevation, ft
405.51 | Elevation, ft
410.62 | Elevation Difference, ft
-5.11 | Downstream ID
ACS4C2005 | Elevation, ft
403.76 | Elevation, ft
403.76 | Elevation Difference, ft | Elevation, ft
405.51 | Elevation, ft
403.76 | Status
Different Invert In | | RHS9E1P6899 | RHS9E1071 | 476.3 | 473.88 | 2.42 | RHS9E1067 | 472.2 | 472.2 | 0 | 476.3 | 403.76 | Different Invert In | | STS2H2P0171 | STS2H2025A | 542.42 | 542.49 | -0.07 | STS2H2025 | 542.32 | 542.32 | 0 | 542.42 | 542.32 | Different Invert In | | DTS6E2P4096 | DTS6E2072 | 484.11 | 484.69 | -0.58 | DTS6E2023 | 482.5 | 482.5 | 0 | 484.11 | 482.5 | Different Invert In | | EAS6G4P0488 | EAS6G4060 | 564.5 | 563.46 | 1.04 | EAS6G4059 | 562.7 | 562.7 | 0 | 564.5 | 562.7 | Different Invert In | | RHS9E1P6905 | RHS9E1102 | 490 | 489.17 | 0.83 | RHS9E1084 | 484.68 | 484.68 | 0 | 490 | 484.68 | Different Invert In | | PPS4F4P6067 | PPS4F4111 | 497.06 | 496.96 | 0.1 | PPS4F4112 | 495.9 | 495.9 | 0 | 497.06 | 495.9 | Different Invert In | | RHS9E1P6508 | RHS9E1024 | 449.1 | 448.46 | 0.64 | RHS9E1019 | 447.7 | 447.7 | 0 | 449.1 | 447.7 | Different Invert In | | JLS5C2P0328 | JLS5C2014 | 401.55 | 401.53 | 0.02 | JLS5C2013 | 400.64 | 400.64 | 0 | 401.55 | 400.64 | Different Invert In | | STS3G4P1492 | STS3G4011 | 512.58 | 512.59 | -0.01 | STS3G4010 | 511.7 | 511.7 | 0 | 512.58 | 511.7 | Different Invert In | | ACS4C2P0300 | ACS4C2001 | 387.11 | 386.56 | 0.55 | ACS4C3T015 | 0 | 383.42 | 0 | 387.11 | 0 | Different Invert In | | DTS5F3TP2744 | DTS5F3T012 | 507.26
404.04 | 507.16
404.18 | 0.1
-0.14 | PPS5F4001
JLS5D1T003 | 506.51
403.81 | 506.51
403.81 | 0 | 507.26
404.04 | 506.51
403.81 | Different Invert In | | JLS5D1TP0360
JLS6D1P2981 | JLS5D1T004
JLS6D1015 | 404.04 | 404.18 | 0.72 | JLS6D1003 | 403.81 | 403.81 | 0 | 404.04 | 403.81 | Different Invert In Different Invert In | | DTS6E1P3285 | DTS6E1025 | 475.88 | 475.9 | -0.02 | DTS6E1024 | 475.4 | 475.4 | 0 | 475.88 | 405.33 | Different Invert In | | JLS5D1P0392 | JLS5D1138 | 423.11 | 422.17 | 0.94 | JLS5D1134 | 421.84 | 421.84 | 0 | 423.11 | 421.84 | Different Invert In | | DTS6E1TP6725 | DTS6E1T005 | 445.376 | 445.38 | -0.004 | DTS6E1T004 | 444.24 | 444.24 | 0 | 445.376 | 444.24 | Different Invert In | | DTS5E3P3053 | DTS5E3028 | 497.14 | 498.48 | -1.34 | DTS5E3027 | 0 | 498.14 | 0 | 497.14 | 0 | Different Invert In | | RHS9E1P6568 | RHS9E1041 | 462.03 | 461.71 | 0.32 | RHS9E1039 | 461.22 | 461.22 | 0 | 462.03 | 461.22 | Different Invert In | | RHS8D4P0614 | RHS8D4011 | 437.63 | 437.39 | 0.24 | RHS8D4010 | 437.11 | 437.11 | 0 | 437.63 | 437.11 | Different Invert In | | JLS6E3P4251 | JLS6E3071A | 469.5 | 469.782 | -0.282 | JLS6E3071 | 468.99 | 468.99 | 0 | 469.5 | 468.99 | Different Invert In | | PPS5G4P2250 | PPS5G4001A | 529.9 | 530.54 | -0.64 | PPS5H2T005 | 527.52 | 527.52 | 0 | 529.9 | 527.52 | Different Invert In | | PPS4H4P0312 | PPS4H4042A | 578.06 | 576.09 | 1.97 | PPS4H4042 | 575.01 | 575.01 | 0 | 578.06 | 575.01 | Different Invert In | | DTS5E2P6003 | DTS5E2033 | 474.46 | 474.45 | 0.01 | DTS5E2011 | 467.36 | 467.36 | 0 | 474.46 | 467.36 | Different Invert In | | DTS6E1TP7073 | DTS6E1T030 | 477.833 | 477.83 | 0.003 | DTS6E1T029 | 474.49 | 474.49 | 0 | 477.833 | 474.49 | Different Invert In | | DTS6E1TP7078 | DTS6E1T026 | 472.613 | 472.61
486.9 | 0.003 | EAS6G4093
DTS5E3T033 | 470.75 | 470.75
486.12 | 0 | 472.613 | 470.75 | Different Invert In | | DTS6E2TP5942
DTS6E2P4130 | DTS5E3T034
DTS6E2071 | 484.1
482.5 | 486.9
485.1 | -2.8
-2.6 | DTS6E2022 | 0
479.94 | 486.12
479.94 | 0 | 484.1
482.5 | 0
479.94 | Different Invert In Different Invert In | | DTS6F3P6526 | DTS6F3024B | 512.78 | 512.068 | 0.712 | DTS6F3023 | 510.18 | 510.18 | 0 | 512.78 | 510.18 | Different Invert In | | DTS6E1P3540 | DTS6E1008 | 462.15 | 462.31 | -0.16 | DTS6E1006 | 0 | 462.15 | 0 | 462.15 | 0 | Different Invert In | | EAS7H1P6603 | EAS7H1019 | 594 | 597.6 | -3.6 | EAS7H1018 | 593.8 | 593.8 | 0 | 594 | 593.8 | Different Invert In | | STS3G4P1271 | STS3G4057 | 507.07 | 508.03 | -0.96 | STS3G4004 | 507.49 | 507.49 | 0 | 507.07 | 507.49 | Different Invert In | | EAS6F1P4027 | EAS6F1139 | 503.92 | 504.08 | -0.16 | EAS6F1138 | 0 | 501.96 | 0 | 503.92 | 0 | Different Invert In | | DTS6E2P3655 | DTS6E2050 | 488.5 | 495.027 | -6.527 | DTS5E3T029 | 484.64 | 484.64 | 0 | 488.5 | 484.64 | Different Invert In | | JLS6E3P6706 | JLS6E3078 | 469.67 | 470.5 | -0.83 | JLS6E3072 | 466.83 | 466.83 | 0 | 469.67 | 466.83 | Different Invert In | | ACS4D1P7370 | ACS4D1008 | 409.83 | 411.21 | -1.38 | ACS4D1007 | 408.5 | 408.5 | 0 | 409.83 | 408.5 | Different Invert In | | JLS5C4TP7522 | JLS5C4T002 | 397.09 | 397.23 | -0.14 | JLS5C4T022 | 396.99 | 396.99 | 0 | 397.09 | 396.99 | Different Invert In | | ACS4D1P6138 | ACS4D1113 | 407.97 | 407.92 | 0.05 | ACS4D1005 | 407.76 | 407.76 | 0 | 407.97 | 407.76 | Different Invert In | | ACS4C4P0338 | ACS4C4051A | 399 | 398.1 | 0.9 | ACS4C4051 | 387.64 | 387.64 | 0 | 399 | 387.64 | Different Invert In | | DTS6E1P2757
DTS6E1P2703 | DTS6E1032
DTS6E1019 | 468.58
468.11 | 467.27
468.14 | 1.31
-0.03 | DTS6E1031
DTS6E1018 | 0
463.95 | 465.06
463.95 | 0 | 468.58
468.11 | 0
463.95 | Different Invert In Different Invert In | | JLS5D2P7614 | JLS5D2108 | 439.65 | 439.64 | 0.01 | JLS5D2092A | 463.95 | 438.28 | 0 | 439.65 | 463.95 | Different Invert In | | JLS5D3P0451 | JLS5D3084A | 411.71 | 410.81 | 0.9 | JLS5D3114 | 410.13 | 410.13 | 0 | 411.71 | 410.13 | Different Invert In | | JLS5D1P2163 | JLS5D1090 | 428.8 | 431.55 | -2.75 | JLS5D1062 | 430.89 | 430.89 | 0 | 428.8 | 430.89 | Different Invert In | | DTS5E3P7762 | DTS5E3081A | 478.72 | 480.52 | -1.8 | DTS5E3081 | 0 | 476.95 | 0 | 478.72 | 0 | Different Invert In | | EAS6F4P5975 | EAS6F2001A | 530.94 | 531.3 | -0.36 | EAS6F4005 | 530.05 | 530.05 | 0 | 530.94 | 530.05 | Different Invert In | | EAS6F4P4320 | EAS6F4020 | 523.4 | 532.4 | -9 | EAS6F4019 | 532.3 | 532.3 | 0 | 523.4 | 532.3 | Different Invert In | | STS2G4P0176 | STS2G4059 | 500.25 | 503.08 | -2.83 | STS2G4052 | 499.89 | 499.89 | 0 | 500.25 | 499.89 | Different Invert In | | DTS6E4P4041 | DTS6E2040 | 494.7 | 493.2 | 1.5 | DTS6E4059 | 492.99 | 492.99 | 0 | 494.7 | 492.99 | Different Invert In | | PPS6G1P3226 | PPS6G1044 | 540.95 | 529.77 | 11.18 | PPS6G1043 | 528.79 | 528.79 | 0 | 540.95 | 528.79 | Different Invert In | | DTS6E1P2955
RHS9E1P6570 | DTS6E1052
RHS9E1054 | 465.5
464.9 | 465.73
465.37 | -0.23
-0.47 | DTS6E1047
RHS9E1045 | 462.63
462.99 | 462.63
462.99 | 0 | 465.5
464.9 | 462.63
462.99 | Different Invert In Different Invert In | | JLS5D2P2780 | JLS5D2084 | 464.9
427.09 | 465.37 | -0.47
-10 | JLS5D2083 | 462.99 | 462.99 | 0 | 464.9
427.09 | 462.99 | Different Invert In | | DTS6E2P3890 | DTS6E2044 | 427.09 | 437.09 | 4.2 | DTS5E3T030 | 0 | 436.69 | 0 | 427.09 | 0 | Different Invert In | | DTS5E3TP2804 | DTS5E3T006 | 453.09 | 449.11 | 3.98 | DTS5E3T030 | 448.89 | 448.89 | 0 | 453.09 | 448.89 | Different Invert In | | DTS6E1P2796 | DTS6E1027 | 450.92 | 453.63 | -2.71 | DTS6E1026 | 0 | 451.02 | 0 | 450.92 | 0 | Different Invert In | | DTS6E1P3254 | DTS6E1064 | 465.67 | 465.85 | -0.18 | DTS6E1062 | 465.76 | 465.76 | 0 | 465.67 | 465.76 | Different Invert In | | DTS6E1P3338 | DTS6E1070 | 470.46 | 470.7 | -0.24 | DTS6E1069 | 0 | 468.7 | 0 | 470.46 | 0 | Different Invert In | | ACS5C4P6301 | ACS5C4001 | 356.68 | 357.03 | -0.35 | ALS | 356.55
| 356.55 | 0 | 356.68 | 356.55 | Different Invert In | | ACS4C3TP6299 | ACS4C3T001 | 359.4 | 359.3 | 0.1 | ACS5C1022 | 358.11 | 358.11 | 0 | 359.4 | 358.11 | Different Invert In | | RHS8D3P7675 | RHS8D3037A | 431.03 | 432.32 | -1.29 | RHS8D3037 | 430.74 | 430.74 | 0 | 431.03 | 430.74 | Different Invert In | | RHS7D3P4956 | RHS7D3041 | 411.96 | 411.45 | 0.51 | RHS7D3039 | 0 | 410.73 | 0 | 411.96 | 0 | Different Invert In | | PPS5G4P2903 | PPS5G4006A | 540.76 | 541.4 | -0.64 | PPS5G4006 | 539.83 | 539.83 | 0 | 540.76 | 539.83 | Different Invert In | | PPS5G4P2778 | PPS5G4005A | 539.03 | 539.83 | -0.8 | PPS5G4005 | 538.25 | 538.25 | 0 | 539.03 | 538.25 | Different Invert In | | DTS6E2P3629
DTS6E2P5965 | DTS6E1T024
DTS6E2068A | 475.08
489.44 | 469.35
493.888 | 5.73
-4.448 | DTS6E1072A
DTS6E2056 | 0 | 468.96
492.86 | 0 | 475.08
489.44 | 0 | Different Invert In Different Invert In | | PPS5H2TP2136 | PPS5H2T007R | 489.44
530.47 | 493.888
530.53 | -4.448
-0.06 | PPS5H2T006 | 528.5 | 492.86
528.5 | 0 | 489.44
530.47 | 528.5 | Different Invert In | | JLS6D1P7637 | JLS6D1012A | 402 | 404.58 | -0.06 | JLS6D1012 | 397.92 | 397.92 | 0 | 402 | 397.92 | Different Invert In | | JLS5D3TP0097 | JLS5D3T001 | 398.36 | 398.13 | 0.23 | JLS5C4T004A | 398.03 | 398.03 | 0 | 398.36 | 398.03 | Different Invert In | | | | | | | | | | | | | | | Table 6. Miscellanious GIS Questions/Updates | | | | | | | | | | | | |--|------------------------|--------------------------|-------------------|----------------------------------|------------------------------------|--|--|--|--|--|--| | Pipe ID | Manhole
Upstream ID | Manhole
Downstream ID | Diameter,
inch | Upstream Invert
Elevation, ft | Downstream Invert
Elevation, ft | WY Update | | | | | | | STS3F2P6751 | STS3F2005 | STS3F2004 | 8.00 | 495.71 | 495.09 | MH_DNID changed from ACS5C4007 to STS3F2004 | | | | | | | JLS6E3P4257 | JLS6E3069 | JLS6E3069A | 8.00 | 465.70 | 463.60 | MH_DNID changed from JLS6E3068 to JLS6E3069A | | | | | | | PPS5F2TP6047 | PPS5F2T003A | PPS5F2T003B | 24.00 | 515.65 | 513.55 | MH_DNID change from PPS5F2T002 to PPS5F2T003B | | | | | | | ACS4D1P7338 | ACS4D1110 | ACS4D1109 | 8.00 | 462.74 | 458.74 | MH_DNID changed from PPS3H4070 to ACS4D1109 | | | | | | | RHS9E1P6519 | PRIVATE6337 | RHS9E1021 | 6.00 | 463.44 | 463.27 | MH_DNID changed from RHS9E1007 to RHS9E1021 | | | | | | | JLS6E3P6529 | JLS6E3072A | JLS6E3072 | 8.00 | 466.30 | 465.80 | MH_DNID changed form ABN to JLS6E3072 | | | | | | | JLS6E3P4190 | JLS6E3096 | JLS6E3072 | 8.00 | 467.92 | 465.80 | MH_DNID changed form ABN to JLS6E3072 | | | | | | | RHS9E1P6557 | RHS9E1052 | RHS9E1051 | 8.00 | 472.00 | 470.71 | MH_DNID changed from RHS9E1107 to RHS9E1051 | | | | | | | RHS8D4P6942 | RHS8D4004A | RHS8D4004 | 8.00 | 454.05 | 450.75 | MH_DNID cahnged from RHS8D4091 to RHS8D4004 | | | | | | | DTS6E2P7085 | DTS6E2004 | DTS6E2003A | 8.00 | 0.00 | 0.00 | MH_UPID changed from STS2G4034 to DTS6E2004 | | | | | | | STS2H3P7453 | STS2H3034A | STS2H3034 | 8.00 | 0.00 | 521.37 | MH_DNID changed from STS2H3034B to STS2H3034 | | | | | | | WY7486 | WY7276 | WY7279 | 8.00 | 346.62 | 345.06 | Down_Struc_ID (OLD ID) changed from 7276 to 7279 | | | | | | | WY7499 | WY7285 | WY7276 | 8.00 | 350.95 | 346.62 | DOWN_STRUC ID (OLD ID) changed from 7279 to 7276 | | | | | | | ACS4C2P7664 | ACS4C2056B | ACS4C2056A | 6.00 | 426.57 | 426.00 | MH_UPID changed from 2059A to 2056B and
MH_DNID changed from 2059B to 2056A | | | | | | | ACS4C2P7665 | ACS4C2056A | ACS4C2056 | 6.00 | 425.90 | 424.90 | MH_UPID was changed from ACS4C2059B to ACS4C2056A | | | | | | | STS2G3P7678 | STS2G3032 | STS2G3026 | 0.00 | 0.00 | 0.00 | Unknown Diameter modeled as 8inch | | | | | | | STS2G3P7679 | STS2G3034 | STS2G3033 | 0.00 | 0.00 | 0.00 | Unknown Diameter modeled as 8inch | | | | | | | STS2G3P7680 | STS2G3033 | STS2G3032 | 0.00 | 0.00 | 0.00 | Unknown Diameter modeled as 8inch | | | | | | ### **APPENDIX B** Isabel Neighborhood Plan Sewer System Evaluation Project # Isabel Neighborhood Plan Sewer System Evaluation Prepared for # **City of Livermore** Project No. 438-12-15-05 Project Manager: Jon Wells, PE 5-3-17 Date QA/QC Review: Elizabeth T. Drayer, PE Date #### Carlsbad 2173 Salk Avenue, Suite 250 Carlsbad, CA 92008 (760) 795-0365 #### Davis 2020 Research Park Drive, Suite 100 Davis, CA 95618 (530) 756-5905 #### Eugene 1650 W 11th Ave. Suite 1-A Eugene, OR 97402 (541) 431-1280 #### Irvine 6 Venture, Suite 290 Irvine, CA 92618 (949) 517-9060 #### Pleasanton 6800 Koll Center Parkway, Suite 150 Pleasanton, CA 94566 (925) 426-2580 #### Portland 4949 Meadows Road, Suite 125 Lake Oswego, OR 97035 (503) 451-4500 #### Sacramento 2725 Riverside Boulevard, Suite 5 Sacramento, CA 95818 (916) 504-4915 #### Santa Rosa 2235 Mercury Way, Suite 105 Santa Rosa, CA 95407 (707) 543-8506 #### Sunnyvale 1250 Oakmead Parkway, Suite 210 Sunnyvale, CA 94085 (408) 451-8453 #### **Walnut Creek** 1777 Botelho Drive, Suite 240 Walnut Creek, CA 94596 (925) 949-5800 | Overview | | |---|----| | Land Use Assumptions | 2 | | Evaluation Assumptions | 2 | | Sewer Flow Assumptions | 4 | | Sewer Service Area | 4 | | Sewer Flow Factors | 4 | | Projected Sewer Flow | 4 | | Incremental Additional ADWF for the INP | 4 | | Assumed ADWF Loading Locations for the INP | 6 | | Peak Dry Weather Flow and Peak Wet Weather Flow for the INP | 6 | | Required Collection System Infrastructure to Serve the Proposed INP | 8 | | List of Tables | | | Table 1. Proposed Land Uses by Subarea | 3 | | Table 2. Projected Sewer Flow (ADWF) | 5 | | Table 3. Projected ADWF | 6 | | Table 4. Planning Area Sewer Flows without Proposed INP Land Uses | 6 | | Table 5. Gravity Main Improvements Required to Serve INP | 9 | | Table 6. Pump Station Improvements Required to Serve INP | 9 | | Table 7. Estimated Costs for Improvements Required to Serve INP | 10 | | List of Figures | | | Figure 1. Proposed Land Uses | 1 | | Figure 2. Assumed ADWF Loading Locations | 7 | | Figure 3. Hydraulic Evaluation Results | 11 | #### **OVERVIEW** The Isabel Neighborhood Plan (INP) is a proposed development area located in the northwest portion of the City. The planning area for the INP covers approximately 1,138 acres, and is entirely within the City's urban growth boundary. The INP will guide future development of the area surrounding the proposed BART station in the Interstate 580 median, just east of Isabel Avenue and is contingent upon the extension of BART to this location. Proposed land uses for the INP planning area are different from those currently included in the City's current adopted General Plan. The INP includes new residential areas both north and south of Interstate 580, as well as non-residential, employment generating, uses including ground floor retail, office and commercial. Three new neighborhood parks and open space buffers along the creeks are also proposed to provide recreational opportunities and access to natural areas. Figure 1. Proposed Land Uses #### Isabel Neighborhood Plan Sewer System Evaluation The INP planning area includes both existing developed areas and proposed new development areas. Existing collection system infrastructure is in place to serve the existing developed areas within the INP planning area. However, as described in Chapter 5 of the 2017 Sewer Master Plan, improvements will be needed to serve future buildout of the INP planning area, even under current General Plan land uses, without development of the proposed INP land uses. And, as described below, some of those improvements would need to be modified to accommodate the development of the proposed INP. The following describes the INP proposed land uses, projected collection system flows, and required collection system improvements to serve the proposed INP. #### LAND USE ASSUMPTIONS - Proposed INP land uses are based on information provided by the City of Livermore Planning Division. - Residential and Non-Residential acres by subarea and land use designation (INP Draft Plan Buildout 02/21/17). - Residential dwelling units by subarea (Preferred Plan Buildout Residential Units, INP Draft Plan Buildout by Subarea 02/16/17). - INP Subarea Map (February 2017). - Proposed INP land uses are provided for both Change Areas (i.e., proposed new development) and Non-Change Areas (i.e., existing development). - The entire proposed INP planning area lies within the City of Livermore sewer service area. - The proposed INP land uses by subarea are summarized in Table 1. #### **EVALUATION ASSUMPTIONS** - The INP sewer system evaluations to be performed by West Yost Associates (West Yost) will consider the projected sewer flows for both the Change Areas and the Non-Change Areas to evaluate overall City sewer infrastructure needs at buildout of the portions of the proposed INP which lie within the City's sewer service area. - For the collection system modeling for the INP, existing sewer flows within the INP area will be removed and will be replaced with estimated total sewer flows for the INP project. This approach has been used to accurately reflect the existing and proposed new development, and, in particular, the proposed redevelopment of existing developed parcels. This approach is different from that used in the 2017 Sewer Master Plan where existing sewer flows for developed parcels are added to projected flows for planned developments and vacant parcels to determine the total flows. | | Table 1. | Proposed | Land Uses | by | Subarea | |--|----------|----------|------------------|----|---------| |--|----------|----------|------------------|----|---------| | | | | | Resident | ial, acres | | | | | | Non-Reside | ential, acres | | | | | | | |------------|--------------|------------|---------|----------|------------
-------------------------------|---------------------------------|---------------------------------------|----------------------------|-----------------------|-------------|---------------|---------------|--------------------------|------------------------------------|----------------|---------------------------|---| | Subarea | Existing vs. | Transition | Village | Center | Core | Total
Residential
Acres | Residential Dwelling Units (du) | Ground Floor
Retail/ Flex
Space | Neighborhood
Commercial | General
Commercial | Office Core | Office | Business Park | Public/
Institutional | Total Non-
Residential
Acres | Total
Acres | Subarea
Total
Acres | Notes | | 1a | New | 11.2 | 90 | | | 11.2 | 224 | | | | | | | | - | 11.2 | | | | | Existing | | | | | - | | | | 14.0 | | | | | 14.0 | 14.0 | 25.2 | INP Subarea 1a is in CalWater water service area | | 1b | New | | | | | - | | | | | | | 10.2 | | 10.2 | 10.2 | | 111201 11111011111111111111111111111111 | | | Existing | | | | | - | | | | | | | 21.0 | | 21.0 | 21.0 | 31.2 | INP Subarea 1b is in CalWater water service area | | 1c | New | | | | | - | | | | 7.0 | | | 4.8 | | 11.8 | 11.8 | 400.0 | | | | Existing | | | | | - | | | | 30.9 | | | 59.5 | | 90.4 | 90.4 | 102.2 | | | 1d | New | | | | | - | | | | 12.4 | | | 7.4 | | 19.8 | 19.8 | 2010 | | | | Existing | 53.8 | | | | 53.8 | 907 | | | 59.3 | | | 80.9 | 80.2 | 220.4 | 274.2 | 294.0 | | | 1e | New | | | | | - | | | | | | | | | - | - | 31.1 | Area is currently being developed; this is the Shea Sage development which is already approved and currently under construction; not yet "existing" | | | Existing | 31.1 | | | | 31.1 | 476 | | | | | | | | - | 31.1 | | currently under construction, not yet existing | | 2a | New | 3.5 | 3.2 | | | 6.7 | 182 | | | | | | | | - | 6.7 | 6.7 | | | | Existing | | | | | - | | | | | | | | | - | - | | | | 2b | New | 4.6 | 7.7 | | | 12.3 | 361 | | | | | | | | - | 12.3 | 13.1 | | | | Existing | 0.8 | | | | 0.8 | | | | | | | | | - | 0.8 | | | | 2c | New | 5.5 | 6.2 | | | 11.7 | 328 | | | | | | | | - | 11.7 | 11.7 | | | | Existing | | | | | - | | | | | | | | | - | - | | | | 2d | New | 1.7 | 4.0 | | | 5.7 | 174 | | | | | | | | - | 5.7 | 5.7 | | | | Existing | | | | | - | | | | | | | | | - | - | 0.7 | | | 3a | New | 2.8 | | | 3.8 | 6.6 | 507 | 0.9 | | | 6.4 | | | | 7.3 | 13.9 | 13.9 | | | | Existing | | | | | - | | | | | | | | | - | - | 10.0 | | | 3b | New | | 6.4 | 10.8 | 7.9 | 25.1 | 1,278 | 2.5 | 4.1 | | | | | | 6.6 | 31.7 | 31.7 | | | | Existing | | | | | - | | | | | | | | | - | - | 31.7 | | | 3c | New | | | | | - | | 0.5 | | | 6.9 | | | | 7.4 | 7.4 | 7.4 | | | | Existing | | | | | - | | | | | | | | | - | - | | | | 3d | New | | | | | - | | | | | 5.9 | | 8.0 | | 13.9 | 13.9 | | Area is currently developed; does not reflect | | | Existing | | | | | - | | | | | | | | | - | - | 13.9 | existing office buildings proposed to be replaced under INP project | | 3e | New | | 3.3 | 4.0 | 2.7 | 10.0 | 488 | | | | | | | | - | 10.0 | | Area is currently developed; does not reflect | | | Existing | | | | | - | | | | | | | | | - | - | 10.0 | existing office buildings proposed to be replaced under INP project | | 3f | New | | | | | - | | | | | | 6.2 | | | 6.2 | 6.2 | 40.0 | Area is currently developed; does not reflect | | | Existing | | | | | - | | | | | | 6.0 | | | 6.0 | 6.0 | | replacement of existing office building | | 4 | New | 10.3 | 7.5 | 3.1 | 2.6 | 23.5 | 795 | | | | 5.2 | | | | 5.2 | 28.7 | 00.7 | IND Subaras 4 is in CallMater water comis- | | | Existing | | | | | - | | | | | | | | | - | - | 28.7 | INP Subarea 4 is in CalWater water service area | | Outside of | | | | | | - | | 0.9 | | | | | | | 0.9 | 0.9 | | | | | | | | | | - | | | | | | | | | - | - | 0.9 | | | Totals | | 39.6 | 38.3 | 17.9 | 17.0 | | 4,337 | 4.8 | 4.1 | 19.4 | 24.4 | 6.2 | 30.4 | - | 89.3 | 202.1 | | | | | Existing | 85.7 | - | - | - | 85.7 | 1,383 | - | - | 104.2 | - | 6.0 | | 80.2 | 351.8 | 437.5 | | | | | Total | | | 17.9 | 17.0 | | 5,720 | 4.8 | 4.1 | 123.6 | 24.4 | 12.2 | | 80.2 | 441.1 | 639.6 | 630 6 | Does not include Parks and Open Space | | | iotai | 123.3 | 30.3 | 17.3 | 17.0 | 130.3 | 3,120 | 4.0 | 4.1 | 123.0 | | | | | | | | Plan Buildout 02/16/2017 (residential dwelling units by subarea) | ⁽a) "New" corresponds with "Change Areas" in the INP Land Use Plan; "Existing" corresponds with "Non-Change Areas" in the INP Land Use Plan. #### **SEWER FLOW ASSUMPTIONS** #### **Sewer Service Area** • All INP subareas are located in the City of Livermore sewer service area. #### **Sewer Flow Factors** - The average dry weather flow (ADWF) factor for all proposed INP residential land uses is assumed to be 80 gallons per day (gpd) per dwelling unit (du), (consistent with the ADWF factor for UH-4 residential land uses in the 2017 Sewer Master Plan). This ADWF factor is considered appropriate for the UH-4 density, as well as higher density development, as the individual dwelling unit square footages and occupancy of the higher density development would be, similar to UH-4 development, only with higher Floor Area Ratios (FAR) (e.g., additional stories) to provide for more dwelling units per acre. - The ADWF for non-residential land uses is based on the ADWF factor for Business/Commercial Park (BCP) of 510 gallons per acre per day (gpad) (based on the ADWF factors established for the 2017 Sewer Master Plan). - The proposed non-residential land uses within the proposed INP include Ground Floor Retail/Flex Space, Neighborhood Commercial, General Commercial, Business Park and Public/Institutional, which will have sewer flow consistent with the BCP land use category. - Proposed Office Core and Office land uses are proposed to have multi-story office buildings (4 to 6 stories for Office Core and 3 to 4 stories for Office). The proposed Floor Area Ratios (FAR) for Office Core and Office land uses are consistent with the proposed multi-story construction. To account for ADWF in Office Core and Office land uses, the BCP ADWF factor is scaled up for Office Core (3 times the BCP ADWF factor, or 1,530 gpad) and for Office (2 times the BCP ADWF factor, or 1,020 gpad). #### **Projected Sewer Flow** - The projected ADWF sewer flow for the INP by subarea is provided in Table 2. - A summary of the projected ADWF for the INP is provided in Table 3. #### **Incremental Additional ADWF for the INP** Sewer flows for the INP planning area with and without the proposed INP land uses are summarized in the table below (Table 4). As shown, the projected ADWF with the INP is approximately 37 percent higher than the projected ADWF based on the City's 2017 Sewer Master Plan assumptions, which are based on developed parcels and projected sewer flows for planned new development and vacant parcels based on General Plan land uses. The ADWF projected for the INP grew by a higher percentage than the average daily water demands for the INP. The higher percentage of ADWF growth is a result of existing and planned non-residential General Plan land uses in the CalWater water service area, which have a relatively low return-to-sewer ratio because of irrigation uses, being replaced with higher return-to-sewer ratio land uses proposed in the INP. | Table 2. Pr | ojected Sewe | r Flow (ADW | /F) | |-------------|--------------|-------------|-----| | | | 0:1 1:1 | | | | | | | | | Table 2. Pro | ojected Sewe | r Flow (ADWI | Γ) | | | | |------------|---------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|------------------------------|--------------------------------|---|---|-----------------|-------------------|------------------| | Subarea | Existing vs. New ^(a) | Residential
Sewer Flow,
gpd | Residential
Sewer Flow,
af/yr | Office Core
Sewer Flow,
gpd | Office Core
Sewer Flow,
af/yr | Office Sewer
Flow,
gpd | Office Sewer
Flow,
af/yr | Other Non-
Residential
Sewer Flow,
gpd | Other Non-
Residential
Sewer Flow,
af/yr | Total ADWF, gpd | Total ADWF, af/yr | Notes | | | ADWF Factor | 80 | | 1530 | | 1020 | | 510 | | | | | | | Unit | gpd/du | | gpad | | gpad | | gpad | | | | | | 1a | New | 17,920 | 20 | - | - | - | - | - | - | 17,920 | 20 | | | | Existing | - | - | - | - | - | - | 7,140 | 8 | 7,140 | 8 | | | 1b | New | - | - | - | - | - | - | 5,202 | 6 | 5,202 | 6 | | | | Existing | - | - | - | - | - | - | 10,710 | 12 | 10,710 | 12 | | | 1c | New | - | - | - | - | - | - | 6,018 | 7 | 6,018 | 7 | | | | Existing | - | - | - | - | - | - | 46,104 | 52 | 46,104 | 52 | | | 1d | New | - | - | - | - | - | - | 10,098 | 11 | 10,098 | 11 | | | | Existing | 72,560 | 81 | - | - | - | - | 112,404 | 126 | 184,964 | 207 | | | 1e | New | - | - | - | - | - | - | - | - | - | - | | | | Existing | 38,080 | 43 | - | - | - | - | - | - | 38,080 | 43 | | | 2a | New | 14,560 | 16 | - | - | - | - | - | - | 14,560 | 16 | | | | Existing | - | - | - | - | - | - | - | - | - | - | | | 2b | New | 28,880 | 32 | - | - | - | - | - | - | 28,880 | 32 | | | | Existing | - | - | - | - | - | - | - | - | - | - | | | 2c | New | 26,240 | 29 | - | - | - | - | - | - | 26,240 | 29 | | | | Existing | - | - | - | - | - | - | - | - | - | - | | | 2d | New | 13,920 | 16 | - | - | - | - | - | - | 13,920 | 16 | | | | Existing | - | - | - | - | - | - | - | - | - | - | | | 3a | New | 40,560 | 45 | 9,792 | 11 | - | - | 459 | 1 | 50,811 | 57 | | | | Existing | - | - | - | - | - | - | - | - | - | - | | | 3b | New | 102,240 | 115 | - | - | - | - | 3,366 | 4 | 105,606 | 118 | | | | Existing | - | - | - | - | - | - | - | - | - | - | | | 3c | New | - | - | 10,557 | 12 | - | - | 255 | 0 | 10,812 |
12 | | | | Existing | - | - | - | - | - | - | - | - | - | - | | | 3d | New | - | - | 9,027 | 10 | - | - | 4,080 | 5 | 13,107 | 15 | | | | Existing | - | - | - | - | - | - | - | - | - | - | | | 3e | New | 39,040 | 44 | - | - | - | - | - | - | 39,040 | 44 | | | | Existing | - | - | - | - | - | - | - | - | - | - | | | 3f | New | - | - | - | - | 6,324 | 7 | - | - | 6,324 | 7 | | | | Existing | - | - | - | - | 6,120 | 7 | - | - | 6,120 | 7 | | | 4 | New | 63,600 | 71 | 7,956 | 9 | - | - | - | - | 71,556 | 80 | | | | Existing | - | - | - | - | - | - | - | - | - | - | | | Outside of | New | - | - | - | - | - | - | 459 | 1 | 459 | 1 | | | Subarea | Existing | - | - | - | - | - | - | - | - | - | - | | | Totals for | New | | 389 | 37,332 | 42 | 6,324 | 7 | 29,937 | 34 | 420,553 | 471 | | | INP | Existing | | 124 | - | - | 6,120 | 7 | 176,358 | 198 | 293,118 | 328 | All INP Subareas | | | Total | 457,600 | 513 | 37,332 | 42 | 12,444 | 14 | 206,295 | 231 | 713,671 | 799 | | ⁽a) "New" corresponds with "Change Areas" in the INP Land Use Plan; "Existing" corresponds with "Non-Change Areas" in the INP Land Use Plan. | | Table 3. Projected | ADWF | | |--------------|--------------------|-------------------|-----------------| | | | Average Dry Weath | ner Flow (ADWF) | | Service Area | Land Use | gpd | af/yr | | | Residential | 457,600 | 513 | | Overall INP | Non-Residential | 256,071 | 287 | | | Total INP | 713,671 | 799 | | Table 4. Planning Area Sewer Flow | s without Proposed INP Land Uses | | | | | |--|---|--|--|--|--| | | ADWF for INP Area, gpd | | | | | | ADWF without INP ^(a) | 519,000 | | | | | | ADWF with INP ^(b) | 714,000 | | | | | | Difference in ADWF with INP 195,000 | | | | | | | development and vacant parcels within the INP planning are | developed parcels and projected sewer flows for planned new a based on General Plan land uses. Ioped parcels and planned new development based on the INP. | | | | | #### **Assumed ADWF Loading Locations for the INP** Because the development of the INP may result in the abandonment of existing collection system infrastructure and in the development of new gravity mains to serve the new development, it cannot be assumed that parcels within the INP will load to the same point in the future as they do currently. The future loading points will depend on the individual development projects, on the laterals that are designed to connect these projects to the collection system, and on the layout of the gravity mains designed to serve the projects. Assumed ADWF loading locations for INP subareas were provided to West Yost based upon the current best estimates of future development patterns. Some subareas did not have assumed flow loading points provided, so for these subareas, West Yost assumed a ADWF loading point based upon the existing collection system. Gravity mains in the collection system that are upstream of the assumed ADWF loading points, either currently existing or proposed, are not evaluated for capacity in this study, and should be evaluated for capacity as part of the development design. The assumed ADWF loading locations are shown on Figure 2. #### Peak Dry Weather Flow and Peak Wet Weather Flow for the INP Consistent with the 2017 Sewer Master Plan, Peak Dry Weather Flow (PDWF) was calculated by applying appropriate, calibrated diurnal patterns to the ADWF from each land use in the INP. Peak Wet Weather Flow (PWWF), which is the design flow used for hydraulic evaluation of the collection system, was calculated by applying acreage-based Rainfall Dependent Inflow and Infiltration (RDII) factors to the INP subareas, consistent with the methodology of the 2017 Sewer Master Plan. #### REQUIRED COLLECTION SYSTEM INFRASTRUCTURE TO SERVE THE PROPOSED INP The collection system to which the INP is tributary was evaluated using the design and performance criteria developed for the 2017 Sewer Master Plan. The tributary collection system, which includes a multitude of gravity mains, the College Pump Station, the Airport Pump Station, and the force mains associated with these two pump stations, has no hydraulic deficiencies identified in the hydraulic model under existing PWWF design conditions. However, under existing PWWF design conditions, the existing tributary collection system has very little surplus capacity, and increased future flows trigger hydraulic improvements, both when the Isabel INP is considered and when it is not. The following collection system infrastructure improvements are required to serve the proposed INP. These improvements are in addition to required collection system improvements for Build-Out design flows described in the 2017 Sewer Master Plan. The improvements required for Build-Out design flows without considering the INP are presented in conjunction with the INP improvements to facilitate comparisons between the two future conditions. The gravity main improvements required to serve the proposed INP can be found in Table 5. As can be seen in the table, two out of the five required gravity main improvements are required to serve Build-out conditions without the INP being considered as well. Three out of the five improvements are required only for the INP. The results of the hydraulic evaluation for collection system pump stations that serve the INP area are shown in Table 6. As shown in the table, the College Pump Station has enough hydraulic capacity to serve both the Build-out and INP design flows. The INP design flow utilizes nearly the full capacity of the College Pump Station and would leave little capacity in reserve. The Airport Pump Station is hydraulically deficient under Build-out conditions both when the INP is considered, and when it is not. The results of the INP hydraulic evaluation can be seen on Figure 3. The force main for each pump station was hydraulically sufficient under all conditions. Estimated costs for the additional collection system improvements to serve the proposed INP are shown in Table 7 below. The estimated costs are developed using unit costs for construction to which a 30 percent planning contingency and a 30 percent factor for engineering, administration, and management are then applied. Unit cost and contingency assumptions from the 2017 Sewer Master Plan were used to develop the estimated capital costs shown in the table. It should be noted that downstream of MH ACS4C4003, which is the downstream boundary of the gravity main improvements in Clubhouse Drive required to serve the INP, there remains a single 8-inch diameter gravity main that dumps into the 18-inch diameter gravity main that flows south toward the Airport Pump Station. If the gravity mains in Table 7 are upgraded to 10-inch diameter as recommended, this single 8-inch diameter gravity main will remain between a 10-inch diameter gravity mains upstream and a 15-inch diameter gravity main downstream. Although this 8-inch diameter gravity main is not technically deficient by performance criteria standards and thus has not been recommended for improvement in this analysis, the City should consider increasing the diameter of this gravity main to 10-inch diameter as part of the Clubhouse Drive project to maintain continuity of diameters for operations and maintenance purposes. # **Isabel Neighborhood Plan Sewer System Evaluation** Table 5. Gravity Main Improvements Required to Serve INP | | | | | <u>a</u> | Maximum q | Maximum q/Q with Current Diameter ^(a) | Diameter ^(a) | Maximun | Maximum q/Q after Improvement | ovement | |---------------------------------------|--------------------------|------------|---------------------|----------------------|--------------------|--|-------------------------|--------------------|-------------------------------|------------| | Upstream
Manhole ID | Downstream
Manhole ID | Length, LF | Current Dia.,
in | Proposed
Dia., in | Existing
Design | Build-out
Design | INP Design | Existing
Design | Build-out
Design | INP Design | | ACS4C2013 | JLS5C2015 | 236 | 15 | 18 | 0.624 | 0.984 | 1.067 | 0.384 | 209'0 | 0.658 | | ACS4C4007 | ACS4C4006 | 276 | 8 | 10 | 0.673 | 986'0 | 1.024 | 0.371 | 0.547 | 0.565 | | ACS4C4006 | ACS4C4005 | 285 | 8 | 10 | 0.684 | 1.007 | 1.041 | 0.377 | 955.0 | 0.574 | | ACS4C4005 | ACS4C4004 | 189 | 8 | 10 | 0.686 | 1.009 | 1.043 | 0.378 | 295.0 | 0.575 | | ACS4C4004 | ACS4C4003 | 287 | 8 | 10 | 0.671 | 0.982 | 1.022 | 0.370 | 0.545 | 0.564 | | · · · · · · · · · · · · · · · · · · · | (c) | , | | | | f = - (1 1) | | | | | ⁽a) A gravity main is judged to be deficient when the maximum q/Q value exceeds 1.0 under the design condition for that gravity main. # Table 6. Pump Station Improvements Required to Serve INP | | Pump Station Data | ition Data | Existing Design | Design | Build-or | Build-out Design | INP Design | sign |
--|-----------------------|-------------------------------------|----------------------|---------------------------------|---------------------|---------------------------------|---------------------|---------------------------------| | Pump Station Name | Firm
Capacity, gpm | Existing Force
Main Diameter, in | Design
Flow, gpm | Available Firm
Capacity, gpm | Design
Flow, gpm | Available Firm
Capacity, gpm | Design
Flow, gpm | Available Firm
Capacity, gpm | | College Pump Station | 4,180-1,400 | 12 | -630- 430 | 026 - 029 - 1 | 066 | 190 | 4,0701,029 | -110- 371 | | Airport Pump Station | 1,145 | 10 | 089 | 465 | 1,480 | (332) ^(a) | 1,510 | (365) ^(a) | | (a) No ago, taging the mode ago, low or itemating the second seco | doficiont conciti | | | | | | | | City of Livermore Isabel Neighborhood Plan Table 7. Estimated Costs for Improvements Required to Serve INP^(a) | Improvement
Type | Improvement Description | Estimated Cost ^(b) ,
Build-out
Requirements | Estimated Cost ^(b) ,
INP Requirements | |-----------------------------------|---|--|---| | Gravity Main
Upsize | Replace 236 If of 15-inch diameter gravity main with 18-inch diameter between MH ACS4C2013 and MH JLS5C2015 under I-580. Jack and Bore installation assumed because of location. | - | \$313,000 | | Gravity Main
Upsize | Replace 276 If of 8-inch diameter gravity main with 10-inch diameter between MH ACS4C4007 and MH ACS4C4006 in Clubhouse Drive. Open cut replacement is assumed. | - | \$103,000 | | Gravity Main
Upsize | Replace 285 If of 8-inch diameter gravity main with 10-inch diameter between MH ACS4C4006 and MH ACS4C4005 in Clubhouse Drive. Open cut replacement is assumed. | \$106,000 | \$106,000 | | Gravity Main
Upsize | Replace 189 If of 8-inch diameter gravity main with 10-inch diameter between MH ACS4C4005 and MH ACS4C4004 in Clubhouse Drive. Open cut replacement is assumed. | \$71,000 | \$71,000 | | Gravity Main
Upsize | Replace 287 If of 8-inch diameter gravity main with 10-inch diameter between MH ACS4C4004 and MH ACS4C4003 in Clubhouse Drive. Open cut replacement is assumed. | - | \$106,000 | | Pump Station
Capacity Increase | Provide required capacity for design flow at the Airport Pump Station. This improvement is assumed to be an upgrade using existing facilities where possible, and not a full replacement. | \$1,254,000 | \$1,273,000 | | | Total | \$1,431,000 | \$1,972,000 | ⁽a) Based on March 2017 ENR CCI of 11609.44 (San Francisco Average). ⁽b) Estimated costs include a 30% planning contingency and a 30% factor for engineering, administration, and management. #### Symbology WRP Water Reclamation Plant #### **Pump Station Capacity Results** - No Capacity Deficiency - Capacity Deficiency Under Both General Plan Build-Out and INP Scenarios - Manhole #### **Gravity Main Capacity Results** - No Deficiency - Deficiency Under INP Scenario Only - Deficiency Under Both General Plan Build-out and INP Scenarios - --- Force Main - Sewer Service Boundary #### Note: 1. Labels shown are upstream and downstream manholes' ID of gravity main capacity deficiencies. # Figure 3 Hydraulic Evaluation Results City of Livermore Isabel Neighborhood Plan Cost Estimating Assumptions #### **Cost Estimating Assumptions** #### 1.1 OVERVIEW This appendix provides the assumptions used by West Yost to develop an opinion of the probable construction cost for the planning and design of recommended sewer system facilities for the City's sewer system. The opinion of probable construction cost was developed based on a combination of data supplied by manufacturers, published industry standard cost data and curves, construction costs for similar facilities built by other public agencies, and construction costs previously estimated by West Yost for similar facilities with similar construction cost indexes. Additionally, the costs presented in this appendix are for construction only and do not include uncertainties in estimation or unexpected construction costs (e.g., variations in final quantities) or cost estimates for land acquisition, engineering, legal costs, environmental review, soils investigation, surveying, construction management, and inspections and/or contract administration. Some of these additional cost items are referred to as contingency costs or mark-ups, and are further described in the last section of this appendix. The opinion of probable construction cost has been adjusted to reflect March 2017 costs at an Engineering News Record (ENR) Construction Cost Index (CCI) of 11609 (San Francisco Average). These construction costs are to be used for conceptual cost estimates only, and should be updated regularly. Construction costs presented in this appendix are not intended to represent the lowest prices in the industry for each type of construction; rather they are representative of average or typical construction costs. These planning-level construction costs have been prepared for guidance in evaluating various facility improvement options, and are intended for budgetary purposes only, within the context of this master planning effort. The following sections of this appendix describe the assumptions used to develop the opinion of probable construction cost for the planning and design of recommended sewer system facilities for the City's sewer system. The cost estimates prepared for this Sewer Master Plan are in accordance with the guidelines of the Association for the Advancement of Cost Engineering (AACE) International for a Class 5 Estimate, suitable for long-range capital planning, with an accuracy range of -50 percent to +100 percent. # 1.2 PIPELINE REHABILITATION, REPAIR, AND REPLACEMENT METHODS AND BASE COSTS The following base costs include sales tax, overhead and profit, and general conditions. They do not include estimating contingency, which is discussed separately in Section 1.3 below. #### 1.2.1 Rehabilitation, Repair and Replacement Methods The following rehabilitation, repair, and replacement methods are potential options for the City's gravity main and force main projects: open cut construction, pipe bursting, pipe reaming, and tunneling. For projects that require the installation of a new relief sewer to address wet weather flows, in-situ methods for the existing pipe, such as the use of cured-in-place pipe, may be considered in conjunction with construction of the new relief sewer pipeline. Specific to the City's projects, factors that determine the most cost-effective rehabilitation method include geological and physical setting, existing pipeline material and condition, and available construction access. #### **Cost Estimating Assumptions** #### 1.2.1.1 Open Cut Construction <u>Description</u>: Open cut or open trench construction, also known as cut and cover, has historically been the most widely used approach for sewer pipe replacements. A trench is excavated that is approximately 18 inches to 2 feet wider than the replacement pipe, and 6 to 12 inches deeper than the bottom of pipe. A new pipe is installed, backfill material placed and compacted, and pavement and surface facilities restored. Often, the new pipe is installed in a different location than the original pipe, and the original pipe abandoned in place. In this case, sewer flow continues through the original pipe, and a planned shutdown is scheduled during the "tie-in," when the new pipe is connected to the existing pipe. Alternatively, the existing pipe is removed to allow replacement of the new pipe in the same location. The existing flow is bypassed through a temporary pumped system during
construction operations. Advantages and Limitations: Historically, open cut construction has been more cost effective than trenchless technologies, and consequently, more widely used for pipe replacement. Open cut construction is appropriate in most soil conditions, and could be beneficial in locations where significant utility crossings are present, depending on the depths of existing utilities. An open trench can be adjusted in the field to avoid existing underground obstructions, or to otherwise relocate the new pipe. This method enables installation of a larger diameter pipeline where capacity issues are present, or improved materials when available or needed. One limitation to open cut construction is in shoring and dewatering. Shoring of the trench walls is required for personnel safety and an engineered shoring system is required when a trench is greater than 5 feet in depth, in accordance with California Labor Code Section 6705. Excavation below the groundwater table, or in soils that permit infiltration of groundwater into the open trench, necessitate aggressive dewatering methods. The added cost of these requirements can decrease the economic viability of open cut construction in specific situations. For pipeline installations in new alignments, a geotechnical investigation is recommended during the design phase to determine shoring requirements and whether groundwater is anticipated during construction. Open cut construction is also difficult where construction access is limited, or on steep hillsides. Open cut construction also impacts surface features and traffic, may introduce safety concerns in highly used or highly traveled locations, and creates temporary noise and dust impacts. Historically, Caltrans has required trenchless construction methods to be used for the installation of new pipelines within their rights of way. #### 1.2.1.2 Pipe Bursting <u>Description</u>: Pipe bursting is a trenchless construction method by which existing pipe is replaced with the same size or typically one size larger pipe in the same location. Pipe bursting is most effective in replacing pipes that are less than 24 inches in diameter and are at least 4 feet deep. This method is the most cost effective when there are few lateral connections, when the old pipe is structurally deteriorated or is easily fractured (e.g., vitrified clay pipe), and when additional capacity is needed and trenchless methods are desired or required. A conical pipe bursting head is conveyed through the pipe, exerting outward forces that fracture the existing pipe and displace fragments outward into the soil. The head is driven by pneumatic pressure, hydraulic expansion, or static pull; the head is connected to and pulls in the new pipe. #### **Cost Estimating Assumptions** The pipe bursting head is inserted and also retrieved through new access pits that are located at approximately 400- to 500-foot intervals. The optimal pull length is dependent upon the size of the host pipe, the degree of upsize required, and the type of soil in the surrounding subsurface. Additional pits, typically 2 feet wide by 2 feet long, are required at each service lateral connection and at crossing utilities. Pipes suitable for pipe bursting are those made of brittle materials, such as vitrified clay. Special bursting heads with cutting elements are required for more ductile pipe materials such as steel, polyvinyl chloride (PVC) and ductile iron. Typically, the replacement pipe material will be high-density polyethylene (HDPE) or fused PVC. Construction using PVC requires longer pit lengths than with HDPE because PVC requires a longer bending radius. Advantages and Limitations: Pipe bursting is quickly gaining popularity as a replacement methodology for small diameter sewers. If HDPE pipe is used, a relatively small pit (as compared to open trench) is required for entry of the pipe bursting head, which can be extracted through an existing manhole. Pipe bursting replaces the existing pipe by up to two diameter sizes without significant open trenching, and therefore reduces surface impacts. The unit cost of pipe bursting is decreasing, and often comparable to open cut methods. Existing conditions must be considered carefully when specifying pipe bursting. Flowing soils such as sand, highly incompressible soils such as rock, installations below the groundwater table, sensitive utilities located within two to three pipe diameters of the pipe to be burst, historical point repairs that are not conducive to bursting such as steel couplings, or significant sags or pipe collapses will limit the success of pipe bursting operations. Pipe bursting may also create ground vibrations and outward ground displacements adjacent to the pipe alignment; these displacements are exacerbated in shallow installations or when the pipe is significantly upsized. When the existing pipe is shallow, this ground displacement may be controlled by saw cutting pavement over the pipe in advance of the bursting operation. This approach localizes surface heave and provides for more simplified trench patch repair. Pipe bursting is performed between pits spaced 400 to 500 feet apart. A manhole can be used in lieu of the receiving pit. During the pipe bursting process, the rehabilitated pipe segment must be taken out of service by rerouting or bypassing sewer flows. Laterals are reconnected through external pits after the pipe bursting activities are completed. #### 1.2.1.3 Cured in Place Pipe (CIPP) <u>Description</u>: CIPP is a trenchless repair method that installs a resin-saturated felt liner into the host pipe through existing manholes. The liner is made of interwoven polyester and may be fiber-reinforced for additional strength. Commonly manufactured resins include unsaturated polyester, vinyl ester, and epoxy, each having distinct chemical resistance to domestic wastewater. The CIPP liner is installed by inversion using water or pressurized air; after the liner is in place, the resin-impregnated tube is cured using hot water, steam, or high-intensity ultraviolet light, creating a seamless pipe that fits tightly against the host pipe wall. Laterals are then connected to the mainline pipe using a remote-controlled cutting device. #### **Cost Estimating Assumptions** Advantages and Limitations: CIPP is a viable rehabilitation technology in 6-inch or larger gravity sewers where the existing pipe has sufficient capacity. Because laterals are connected from inside the lined pipe, little or no trenching is required. Therefore, CIPP may be a preferred alternative in pipelines where trenching would be cost prohibitive. The CIPP method can be used to address structural problems such as cracks and structurally deficient segments, as well as root intrusions because the liner forms itself generally to the shape of the host pipe, and can span gaps caused by roots up to 1 inch in diameter. Larger gaps and alignment deficiencies such as offset joints and sags would require a point repair prior to lining. The flexibility of the resin tube allows installation through existing bends, further minimizing the need for excavation. The liner is resistant to chemical attack, eliminates groundwater from entering the sewer, and retards further corrosion and erosion of the pipeline. The thickness of CIPP liner typically ranges from ½ inch to 1 inch and therefore, the final inside diameter is approximately 1 to 2 inches less than the inside diameter of the existing pipe. The liner typically has less flow friction compared to the host pipe, so the reduction in diameter does not result in a reduction in hydraulic capacity, particularly for pipe above 8 inches in diameter. CIPP installation requires bypass pumping and groundwater dewatering, if in a high groundwater area. Installation length is generally limited to approximately 800 feet due to curing limitations. Therefore, if manholes are located further apart than 800 feet, intermediate trenched access locations are required. Another challenge associated with using CIPP is the procurement, treatment, and/or disposal of water used during the curing process; during the curing process of any resin system, volatile organic compounds are released and must be closely monitored. CIPP is a viable alternative to pipeline replacement when pipeline replacement options are cost-prohibitive, and when existing pipe diameter can be reduced without compromising system performance. CIPP is not recommended when pipeline slopes or other constraints limit the use of hydroflushing as a cleaning method. #### 1.2.1.4 Pipe Reaming <u>Description</u>: Pipe reaming is very similar to pipe bursting in that an existing pipe is drilled out and a new pipe of equal or greater diameter inserted in its place. Because pipe reaming does not displace the broken pieces of the old pipe into the soil, this method is better suited to pipe rehabilitation where nearby pipes or utilities might be impacted by the displaced soil. Pipe reaming employs a directional drill which pulverizes and grinds up the existing pipe while a new pipe is inserted behind it. The old pipe is accessed by an insertion trench, and the drill head is pulled through the pipe by a drill line which runs from an insertion trench where the pipe is accessed to the next manhole. The broken pipe is carried away through the old pipe by drill fluid and collected at the downstream manhole. Pipe reaming can be used to remove brittle pipes such as those composed of vitrified clay, PVC, asbestos concrete, or ductile iron. Fused PVC or HDPE are typically used for the replacement pipe. Pipe reaming has been effective at replacing sections of sewer over 1,000 feet in length or more with little soil disruption. #### **Cost Estimating Assumptions** Advantages and Limitations: Like other trenchless technologies, pipe reaming is advantageous when trying to minimize the impact of construction on traffic and business. When using pipe reaming as a rehabilitation
technology, adequate space must be available for the insertion pit and the heavy machinery necessary for directional drilling and handling of the solids generated by the drilling process. Pipe reaming can become very expensive if there are a large number of laterals that must be reconnected to the replaced pipe. #### 1.2.1.5 Tunneling <u>Description</u>: Where open cut construction is not feasible, practical, or cost effective, trenchless methods can be used to install the sewer pipe. Commonly used trenchless methods include jack-and-bore above the water table, micro tunneling below the water table, and horizontal direction drilling. These methods involve pre-drilling the pipeline alignment and then installing new pipe through the opening. When installed below Caltrans or railroad right of ways, an additional casing may be required by the governing jurisdiction. Advantages and Limitations: Tunneling presents similar advantages to pipe bursting and pipe reaming related to minimized surface impacts when compared to open cut construction. Pipe size increase is not limited with tunneling methods and longer lengths of pipe can be replaced through a single bore. Tunneling requires precise location of existing utilities and is not always appropriate where the new pipeline must maintain a precise slope or avoid numerous underground facilities. Additionally, tunneling requires an understanding of the materials to be tunneled through. Tunneling requires experienced equipment operators that are skilled with the location and guidance of the necessary equipment. Tunneling is assumed to be required along and across Caltrans and railroad rights-of-way. #### 1.2.2 Pipeline Cost Estimates For the Sewer Master Plan, it was assumed that pipelines would be installed using open cut methods under normal conditions. The descriptions for pipe bursting and pipe reaming are included for reference, in the event that preliminary design indicates that these methods are more feasible for a particular project. Tunneling methods are assumed to be used when normal conditions are not present, such as when construction must take place under a freeway, railroad track, or similar obstacle. The pipeline unit construction costs used in the Sewer Master Plan are shown in Table 1. The tunneling costs are shown in Table 2. #### **Cost Estimating Assumptions** | Table 1. Unit Construction Costs for Pipelines ^(a,b) | | | | | | |---|--|--|--|--|--| | Pipeline Diameter, inches | Unit Construction Cost, \$/linear foot | | | | | | 8 | 176 | | | | | | 10 | 220 | | | | | | 12 | 264 | | | | | | 15 | 300 | | | | | | 18 | 360 | | | | | | 21 | 420 | | | | | | 24 | 480 | | | | | | 27 | 540 | | | | | | 30 | 600 | | | | | | 33 | 660 | | | | | | 36 | 720 | | | | | ⁽a) Costs based on San Francisco Peninsula pipeline cost estimates, scaled up to March 2017 ENR CCI of 11609 (San Francisco Average). ⁽b) Costs based on polyvinyl chloride pipe. | Table 2. Unit Construction Costs for Tunneling (Bore and Jack) ^(a,b) Pipeline Size Unit Construction Cost, \$/linear foot | | | | | | | |--|--|--|--|--|--|--| | Unit Construction Cost, \$/linear foot | | | | | | | | 530 | | | | | | | | 605 | | | | | | | | 15-inch diameter (24-inch diameter casing) 700 | | | | | | | | 21-inch diameter (30-inch diameter casing) 865 | | | | | | | | caled up to March 2017 ENR CCI of 11609 (San | | | | | | | | | | | | | | | #### 1.3 LIFT STATION CONSTRUCTION AND CAPACITY UPGRADE CONCEPTUAL COSTS The hydraulic capacity analysis presented in Chapter 5 identified existing lift stations with insufficient capacity. Lift station new construction and capacity upgrade construction cost estimates are based upon pre-established West Yost costs curves for wastewater lift stations, which combine the cost curves presented in Shank's "Pumping Station Design" with cost data from actual projects completed in the last 10 years. The lift station firm capacity (the capacity of the station with the largest pump in reserve) is the key value to input to the curves. From the capacity value, a line is drawn to where capacity intersects the cost curve lines. Two lines are provided to reflect difficult construction conditions and comparatively easy construction conditions. #### **Cost Estimating Assumptions** #### 1.4 CONTINGENCY COSTS AND MARK-UPS Contingency costs or mark-ups must be reviewed on a case-by-case basis because they will vary considerably with each construction project. However, to assist City staff with budgeting for recommended water system facility improvements, the following percentages were developed. - Estimating Contingencies (30 percent): The construction costs presented above are representative of the construction of wastewater collection system facilities under normal construction conditions and schedules; consequently, it is appropriate to allow for estimating and construction uncertainties unavoidably associated with the conceptual planning of projects. Factors such as unexpected construction conditions, the need for unforeseen mechanical items, and variations in design and final quantities are only a few of the items that can increase project costs. - <u>Design and Construction Period Services (50 percent)</u>: Professional services have been divided into two categories as shown below. | Design Period Services: | 20 percent | |-------------------------------|------------| | Construction Period Services: | 30 percent | | Total: | 50 percent | Design period services associated with new facilities include preliminary investigations and reports, right-of-way acquisition, foundation explorations, preparation of drawings and specifications for construction, surveying and staking, sampling of testing material, and start-up services. Design period services also include permitting and regulatory compliance, as well as City administration, legal, and associated activities. Construction period services cover items such as contract management and inspection during construction. The total markup, including contingencies and professional services, is compounded, and amounts to 95 percent of the estimated construction cost. However, it must be noted that for smaller or more complicated projects, the design cost may increase by 10 to 20 percent of the estimated construction cost. An example application of these standard mark-ups to a project with an assumed base construction cost of \$1.0 million is shown in Table 3. As shown, the total cost of all project markups is 95 percent of the base construction cost for each construction project. \$1,950,000 **Total Project Cost** | Table 3. Example Application of Project Cost Mark-ups | | | | |---|---------------------|-------------|--| | Cost Component | Percent | Cost | | | Base Construction Cost ^(a) | | \$1,000,000 | | | Estimating Contingency | 30% | \$300,000 | | | Tota | I Construction Cost | \$1,300,000 | | | Estimating Contingency | | 30% | \$300,000 | |--|------|---------------------|-------------| | | Tota | l Construction Cost | \$1,300,000 | | Design Period Services | | 20% | \$260,000 | | (Consultant/City to perform design, bid, permitting, CEQA, regulatory, legal, outreach, administration) | | | | | Construction Period Services | | 30% | \$390,000 | | (Consultant/City to perform construction management, inspection, testing, programming, engineering support, changed order contingency) | ge | | | Assumed cost of an example project.