OFFICE COPY

11/30/16

A. & E. DESIGN SERVICES

STEVEN'B. NEEF

2157 FOURTH ST LIVERMORE, CALIFORNIA 94550 (925) 449-3883 NEEF2@AOL.COM

RCE C-038548

JOB NUMBER:

2016-

VALID ONLY WITH ORIGINAL SIGNATURE

STRUCTURAL CALCULATIONS FOR:

MANCINI

DOUG HARWOOD c/o

FOR THE STRUCTURE AT:

UNIT A

2ND AND "P" ST. LIVERMORE, CA.

DESIGN PARAMETERS

SCOPE:

THESE CALCULATIONS CHECK THE PROPOSED RESIDENCE FOR

VERTICAL LOADS: DEAD PLUS LIVE. LATERAL LOADS: WIND AND SEISMIC

REFERENCES:

2013 C.B.C.

2013 C.R.C.

AND 2012 I.B.C.

SOILS:

SOILS VALUES PER 2013 C.B.C. FOR CLASS 5 SOILS

BEARING PRESSURE 1500 PSF
THE OWNER ASSUMES ALL RESPONSIBILITY FOR THE DECISION NOT TO ACQUIRE A
CURRENT SOILS REPORT AND AGREES THAT THE IS TO THE DECISION NOT TO ACQUIRE A

CURRENT SOILS REPORT AND AGREES THAT THIS IS TO HIS SOLE BENEFIT.

LATERAL LOADS:

WIND

EXPOSURE C

RISK CATEGORY

REVIEWED

V(ULT) = 110 MPH.V(ASD) = 85 MPH.

(NO SPECIAL INSPECTION REQUIRED)

SEISMIC DESIGN CATEGORY

D

IMPORTANCE FACTOR WARMERDAM

LIGHT WEIGHT FRAMING R=

6.5

(NO SPECIAL INSPECTION PER 1705.11 EXCEPTION 3)

ASSUMPTIONS:

WEIGHTS OF MATERIALS ARE CONSERVATIVE BY ABOUT 7%

INPUT TO COMPUTER ASSUMED ACCURATE TO ± 5%

COMPUTER SOFTWARE IS ACCURATE TO FROM -0% TO +5% (CONSERVATIVE)

UPLIFT FORCES OF LESS THAN 200 LBS ARE ASSUMED TO BE RESISTED BY ANCHOR BOLTS, SILL NAILING, ADJACENT WALLS, ETC. WITHOUT REQUIRING A HOLDOWN.

LIMITATIONS:

THESE CALCULATIONS HAVE BEEN PREPARED IN ACCORDANCE WITH ACCEPTED ENGINEERING PRACTICE IN THE STATE OF CALIFORNIA AND NO OTHER WARRANTIES

ARE MADE AS TO THE PROFESSIONAL ADVICE PROVIDED HEREIN.

A. & E. DESIGN SERVICES WILL ACCEPT NO RESPONSIBILITY FOR WORK PERFORMED BY OTHERS. WHICH HAS NOT BEEN CHECKED, STAMPED AND SIGNED BY US. IT IS THE RESPONSIBILITY OF THE ARCHITECT / DESIGNER TO INCORPORATE THE REQUIREMENTS OF THESE CALCULATIONS

INTO THE CONSTRUCTION DOCUMENTS AND ACQUIRE THESE APPROVALS.

WEIGHTS OF	MATERIALS				
	MATERIAL	WEIGHT	-		
ROOF:	COMPOSITION ROOF #1	4.8 psf.	ROOF SLOPE (F): ROOF DEAD LOAD	6:12 WC	RST CASE
	RAFTERS	2.0 psf.	ROOF LIVE LOAD	18 psf.	
	DECKING 1/2 in.	1.8 psf.	(20 psf. X (1.2-0.0		12)
	MISCELLANEOUS	1.4 psf.	TOTAL (ROOF ONLY)	29 psf.	
	SLOPE INCREASE	1.0 psf.			
CEILING:	CEILING 5/8 in.	2.9 psf.	CEILING DEAD LOAD	6 psf.	
	CEILING JOISTS	1.8 psf.	CEILING LIVE LOAD	20 psf.	
	INSULATION AND MISC.	0.8 psf.	(LIMITED STORAGE NON	•	<u>F.S.</u>
	FIRE SPRINKLERS	0.5 psf.	TOTAL DEAD LOAD	17 psf.	10%
			TOTALLOAD	35 psf.	
FLOOR:	JOISTS	3.7 psf.			
	DECKING 3/4 in.	2.7 psf.			
	CEILING 5/8 in.	2.9 psf.			
	FLOOR COVERING	2.7 psf.			
	INSULATION AND MISC.	1.5 psf.	FLOOR DEAD LOAD	14 psf.	7%
	FIRE SPRINKLERS	0.5 psf.	FLOOR LIVE LOAD	40 psf.	
			TOTAL LOAD	54 psf.	
				·	
EXT. WALLS:	STUDS 2 X 6 @ 16	1.8 psf.		-	
	STUCCO 7/8 in.	9.0 psf.			
	PLYWOOD 1/2 in.	1.8 psf.			
	GYPSUM 1) 1/2 in.	2.3 psf.			
	INSULATION AND MISC.	1.1 psf.			
			TOTAL LOAD	16 psf.	7%
TRITE TRIATT C.	CTUDE 2V464C	1 1 mof			
INT. WALLS:	STUDS 2 X 4 @ 16 GYPSUM 2) 1/2 in.	1.1 psf. 4.6 psf.			
	MISCELLANEOUS	2.3 psf.			
	MIJGELLEANLOOG		TOTAL LOAD	8 psf.	24%

GENERAL NOTES

- 1) ALL WORK SHALL COMPLY WITH THE 2012 IR.C. AS AMENDED BY THE 2013 C.B.C. THE 2012 U.M.C. AS AMENDED BY THE 2013 C.M.C. THE 2012 U.P.C. AS AMENDED BY THE 2013 C.P.C. THE 2008 N.E.C. AS AMENDED BY THE 2013 C.E.C. THE 2013 CALIFORNIA ENERGY CODE (2008 BUILDING ENERGY EFFICIENCY STANDARDS.) AND ALL APPLICABLE STATE COUNTY AND LOCAL CODES AND STANDARDS.
- 2) CONTRACTORS SHALL VERIFY ALL DIMENSIONS PRIOR TO THE FABRICATION OF ANY WORK. DO NOT SCALE PLANS. ANY ERRORS SHALL BE BROUGHT TO THE ATTENTION OF THE DESIGNER IMMEDIATELY.
- 3) IN THE EVENT THAT CERTAIN FEATURES OF THE CONSTRUCTION ARE NOT SHOWN, THEN THEIR CONSTRUCTION SHALL BE OF THE SAME CHARACTER AS FOR SIMILAR CONDITIONS WHICH ARE SHOWN OR CALLED FOR.
- 4) CONTRACTOR SHALL INSPECT ALL EXISTING CONDITIONS WHICH EFFECT THE WORK AND NOTIFY THE ENGINEER OF ANY CONDITIONS WHICH CONFLICT WITH THE WORK TO BE DONE.
- 5) THE CONTRACTOR IS COMPLETELY RESPONSIBLE FOR THE CONDUCT OF THE WORK INCLUDING ALL METHODS, PROCEDURES, SITE SAFETY, TEMPORARY BRACING AND SHORING, SCHEDULING OF INSPECTIONS AND OBTAINING NEEDED PERMITS.
- 6) IN THE EVENT OF A CONFLICT BETWEEN CODES THE MORE STRINGENT SHALL GOVERN.
- 7) CONTRACTOR SHALL REVIEW ALL DOCUMENTS COMPLETELY BEFORE PROCEEDING WITH THE CONSTRUCTION.
- 8) ALL MANUFACTURED MATERIALS, COMPONENTS, FASTENERS AND ASSEMBLIES SHALL BE HANDLED AND INSTALLED IN ACCORDANCE WITH THE MANUFACTURERS INSTRUCTIONS.
- 9) PLANS CAN NOT BE MODIFIED BY ANYONE OTHER THAN THE DESIGNER AND LICENSED ENGINEER.
- 10) CONTRACTOR AND ALL SUBCONTRACTORS TO VERIFY THAT THEY ARE USING ONLY THE FINAL PERMITTED SET OF PLANS.

2 X RAFTERS AND JOISTS										
Z X KAFTERS AND JOISTS	DF #2 U.O.N.									
4 X & 6 X BEAMS AND POSTS	DF #1 U.O.N.	(UNDER FLOOR GIRDERS MAY BE DF #2)								
TYPICAL 4 X 12 HEADERS	DF #2 U.O.N.									
STUDS	STANDARD OR BETTER									
GLU-LAM BEAMS	24F V4 STANDARD CAMB	ER FOR SIMPLE SPANS V8 FOR CANTILEVERS								
	BEAMS TO BE CERTIFIED AND STAN	IPED BY INSPECTION AGENCY.								
CONCRETE (no special inspection)	2500 PSI. 4" SLUMP 3/4" MA	X AGGREGATE SIZE PER A.S.T.M.C33								
		NS OF CLEAN WATER PER SACK OF CEMENT.								
REBAR	#5 AND SMALLER GRADE 40, #6	AND LARGER GRADE 60 PER ASTM A615								
CONNECTORS	•	VALUES USED ARE FOR SINKER NAILS								
ANCHOR BOLTS		5/8" DIA X 12" BOLTS AT 48" oc. OR PER SHEARWALL SCHEDULE, AND 5" TO 12" FROM								
	ENDS OF MUD SILL AND 1-3/4" FRO	OM EDGE. EMBED 7" INTO CONCRETE.								
		WALL LINES SHALL BE INSTALLED WITH								
	SIMPSON BPS 5/8-3 PLATE WASHE	RS AND CUT WASHERS. (BP 5/8-3 OK WITHOUT CUT WASHER)								
NAILS 2 X MEMBERS	16d SINKERS U.O.N.									
1 X MEMBERS	8d SINKERS U.O.N.									
PLYWOOD	8d COMMON OR DEFORMED SHANK BOX. U.O.N. FLOORS TO BE GLUED.									
MUD SILLS & LEDGERS TO CONCRETE PRESSURE TREATED DOUGLAS FIR.										
	NAILS AND BOLTS LESS THAN 5/8'	DIA. INTO P.T. TO BE GALVANIZED.								
		04.9.1 UNLESS A GREATER NUMBER								
OF NAILS IS CALLED FOR ON THE	_	0) 0 1 7071111 0 51011 511								
JOISTS OR RAFTERS	TO BEARING (SILL OR GIRDER)	3)-8d TOENAILS EACH END								
	TO PARALLEL MEMBERS	16d AT 12"								
SOLE PLATE	_TO JOIST OR BLOCKING	16d AT 16" OR PER SHEARWALL SCHEDULE								
STUDS	TO BEARING	2)-16d END NAIL								
	TO SOLE PLATE	2)-16d END NAIL (20d @ 3x plate) or 4)-8d TOENAILS								
	TO PARALLEL STUDS	16d AT 24"								
	_ TO CONTINUOUS HEADER	4) 8d TOENAILS								
4 X 4 AND LARGER	_TO BEARING	4) 8d TOENAILS								
TOP PLATE	TO SECOND TOP PLATE	16d AT 16"								
•	LAP SPLICE	8) 16d								
DI GOMINO DETINEEN TOTAL	_AT INTERSECTION	2) 16d								
BLOCKING BETWEEN JOISTS	TO TOP PLATES	3) 8d TOENAILS								
DD4 JOISTS	_TO JOISTS	3) 8d TOENAILS EACH END 8d AT 6"								
RIM JOISTS	_ TO TOP PLATES	3) 8d TOENAILS								
CEILING JOIST'S	TO TOP PLATES	3) 16d								
	LAP AT PARTITION	·								
2 (0) 1 (2)(AND 2 (4)(D) V(A)(COD	_TO PARALLEL RAFTERS	3) 16d 8d COMMON OR DEFORMED SHANK (MIN.)								
3/8",1/2"AND 3/4" PLYWOOD	TO FRAMING	, ,								
1-1/8" PLYWOOD	TO FRAMING	10d COMMON OR 16d SINKER A COPY OF THIS PAGE SHOULD BE ATTACHED TO THE PLANS								

FRAMING NOTES

TYPICAL

- 1) ALL UNTREATED WOOD TO BE 1/2" MINIMUM FROM CONCRETE OR MASONRY. (RAISE PLYWOOD 1/2")
- 2) WHEREVER THE WOOD TENDS TO SPLIT, HOLES SHALL BE PREDRILLED. SPLIT MEMBERS SHALL BE REPLACED.
- 3) PROVIDE POSTS THE FULL WIDTH OF BEAMS AND PROVIDE SOLID POSTS AND/OR BLOCKING TO FOUNDATION.
- 4) WHERE TOP PLATES OR SOLE PLATE ARE CUT FOR PLUMBING, PROVIDE A 1-1/2" WIDE X .058" THICK STRAP EACH SIDE W/ 12)16d
- 5) PROVIDE DOUBLE JOISTS UNDER PARALLEL PARTITIONS EVEN IF NOT SHOWN ON PLANS.

PLYWOOD

- 6) CENTER PLYWOOD JOINTS OVER FRAMING MEMBERS WITH 1/16"± SPACE BETWEEN SHEETS.
- 7) DRIVE NAILS FLUSH WITH PLYWOOD SURFACE, PROVIDE 3/8" MIN. EDGE DISTANCE FOR NAILS AT PLYWOOD AND FRAMING MEMBERS.
- 8) EDGE NAIL PLYWOOD TO COLLECTORS WITH 2) ROWS OF 8d AT 6" WHERE TWO SHEETS MEET. 1) ROW OF 8d AT 4" IN FIELD OK.
- 9) LAY PLYWOOD SHEETS WITH FACE GRAIN PERPENDICULAR TO RAFTERS AND JOISTS WITH 24" MIN. SHEET SIZE.
- 10) ROOF DIAPHRAGM TO BE 1/2" CDX PLYWOOD WITH 8d AT 6" EDGE & 12" FIELD (UNBLOCKED) U.O.N. (1/2" O.S.B. OK)
- 11) FLOOR DIAPHRAGMS TO BE 3/4" CDX PLYWOOD, GLUED & NAILED W/ 8d AT 6 EDGE & 12" FIELD (UNBLOCKED) U.O.N. (3/4" O.S.B. OK)

BLOCKING

- 12) PROVIDE SOLID BLOCKING BETWEEN JOISTS UNDER PARTITION WALLS, OVER BEARING POINTS AND FIRE BLOCKING PER CBC. 717.2
- 13) SOLID BLOCK AT 8' o.c. BETWEEN 2 X 12 FLOOR JOISTS WITH SPANS OVER 10'. (WHERE CEILINGS DO NOT BRACE JOISTS.)

TRUSSES

- 14) WHEN ROOF TRUSSES SPAN OVER 30'-0", PROVIDE A STUD DIRECTLY BELOW THE TRUSS. ADD STUDS AS NEEDED.
- 15) PROVIDE 1/4" GAP BETWEEN TRUSSES AND NON BEARING PARTITIONS AND CONNECT WITH SIMPSON STC PLATE.
- 16) TRUSS CALCULATIONS SHALL BE PROVIDED BY MANUFACTURER, REVIEWED BY THE ENGINEER, AND SUBMITTED TO THE BUILDING DEPT., FOR APPROVAL, PRIOR TO MANUFACTURE AND INSTALLATION. SEE "SUMMARY" FOR ROOF LOADS

GLU LAMS

- 17) STANDARD CAMBER FOR GLU-LAMS IS A 3500 FT. MIN. RADIUS. (=1/8" @ 16' SPAN, =3/16" @ 20' SPAN)
- 18) AITC. CERTIFICATES FOR GLU-LAMS SHALL BE PROVIDED BY MANUFACTURER AND SUBMITTED TO THE BUILDING DEPT., FOR APPROVAL, PRIOR TO INSTALLATION.

ATTICS

19) ATTICS TO HAVE 22" X 30" ACCESS TO ALL AREAS OVER 30" HIGH. VENTS TO BE PROVIDED EQUAL TO THE AREA / 150 WITH HALF THE VENTS AT THE EAVES AND HALF THE VENTS AT LEAST 3'-0" ABOVE THE EAVES.

GENERAL

- 20) NOT ALL PORTIONS OF ANY GIVEN STRUCTURE ARE REQUIRED TO BE ENGINEERED. ANY PORTION NOT DETAILED ON THE PLANS SHOULD BE CONSTRUCTED PER THE CONVENTIONAL LIGHT FRAME CONSTRUCTION PROVISIONS OF 2013 C.B.C.
- 21) LUMBER TO HAVE 19% MAX. MOISTURE CONTENT AT TIME OF INSTALLATION.

FOUNDATION NOTES

CONCRETE

- 1) DO NOT LOAD CONCRETE UNTIL IT HAS SUFFICIENTLY CURED TO CARRY THE LOADS. (TYPICALLY 7 DAYS.)
- 2) ALL CONCRETE TO CONFORM WITH ACI 318-11
- 3) CONCRETE SLABS TO BE CURED BY BEING KEPT MOIST FOR SEVEN DAYS AFTER POURING OR BY SPRAYING WITH AN APPROVED CURING COMPOUND. ALL SLABS TO HAVE A MINIMUM OF #3 BARS AT 18" o.c. BOTH WAYS.
- 4) CONCRETE TO BE VIBRATED OR RODDED DURING PLACEMENT TO FILL ALL VOIDS.

REBAR

- 6) REBAR TO BE CLEAN OF MUD AND OIL AND SUPPORTED SO AS TO STAY IN POSITION DURING THE POUR. DO NOT WELD REBAR.
- 7) PROVIDE 3" CONCRETE COVER FROM REBAR TO SOIL, 2" AT BOTTOM OF SLABS ON GRADE. 1-1/2" COVER TO AIR.

GENERAL

- 8) PROVIDE EXPANSION STRIPS AT EDGES OF SLABS, U.N.O. AND KNIFE CUT CONTRACTION JOINTS AT APPROXIMATELY 10'-0" o.c. SOIL UNDER SLABS TO BE MOISTURE CONDITIONED PRIOR TO POUR TO MINIMIZE SWELL POTENTIAL.
- 9) FOOTINGS TO BEAR ON UNDISTURBED MATERIAL REGARDLESS OF ELEVATIONS SHOWN. ALL TRENCHES TO BE CLEAN, LEVEL AND TAMPED DOWN. TOP OF FOUNDATION TO BE LEVEL AND STEPPED AS NEEDED.
- 10) PROVIDE 8" FROM WOOD TO EARTH AND SLOPE GRADE AWAY FROM STRUCTURE AT 5 PERCENT WITHIN 10' OR TO SUITABLE DRAIN.

 BOLTS
- 11) TYPICAL ANCHOR BOLTS TO BE 5/8" DIA. AT 48" o.c. WITH 2) MIN. PER PIECE, AND 5" TO 12" FROM THE ENDS OF ALL SILL PLATES, UNLESS A GREATER NUMBER OF BOLTS ARE CALLED FOR IN THE SHEAR WALL SCHEDULE. (W/ BPS 5/8-3 PLATE WASHERS & CUT WASHERS AT SHEARWALLS OR BRACED WALL LINES.)
 - LOCATE PLATE WASHERS WITHIN 1/2" OF EDGE OF MUD SILL TAKING PLYWOOD NAILING.

CRAWL SPACE

- 12) PROVIDE 18" MIN. CLEAR FROM GROUND TO FLOOR JOISTS AND 12" MIN. CLEAR TO GIRDERS. ALL UNDER FLOOR AREAS TO HAVE AN 18" X 24" MINIMUM ACCESS.
- 13) UNDER FLOOR SHALL BE VENTILATED BY OPENINGS IN THE EXTERIOR FOUNDATION WALLS. OPENINGS SHALL HAVE A MINIMUM AREA OF 1 SQ. FT FOR EACH 150 SQ. FT. OF UNDER FLOOR AREA AND BE COVERED WITH CORROSION RESISTANT WIRE MESH WITH OPENINGS OF 1/4" MAX. PER C.B.C. LOCATE VENTS NEAR CORNERS AND ON AT LEAST 2 OPPOSITE SIDES OF CRAWL AREA. DO NOT CUT HOLES IN GRADE BEAMS UNLESS APPROVED BY THE ENGINEER.

MUD SILLS

- 14) MUD SILLS TO BE PRESSURE TREATED DOUGLAS FIR. SPRAY ALL CUTS AND HOLES WITH COPPER GREEN TREATMENT OR EQUAL.
- 15) NAILS AND BOLTS INTO PRESSURE TREATED MATERIAL TO BE GALVANIZED. 5/8" DIA BOLTS AND LARGER DO NOT NEED TO BE GALV.
- 16) PIPES THROUGH CONCRETE TO BE SLEEVED OR WRAPPED. NO ALUMINUM SHALL BE IN CONTACT WITH CONCRETE.
- 17) WOOD TO BE 8" MIN. ABOVE GRADE. NON TREATED WOOD TO BE 1/2" MIN. FROM CONC. STUCCO SCREED TO BE 4" MIN. ABOVE GRADE,

VERTICAL LOAD CALCULATIONS 139.75278 D + L + Lr 2013 C.B.C. .XX SPAN **TYPICAL** XX SPAN (P3) LOAD XX SPAN (P2) DIAGRAM XX SPAN 1 (w2) DISTRIBUTED LOAD (W) TRIANGULAR (w) UNIFORM ∕~~ (R1) SPAN (I) (R2)

- 1) LOAD DURATION FACTOR FOR ROOF LIVE LOADS IS 1.25. WHERE LESS THAN 25% OF THE LOAD ON A BEAM IS ROOF LIVE LOAD A LOAD DURATION FACTOR OF 1.00 MUST BE USED AND THE ROOF LIVE LOAD MAY BE NEGLECTED.
- 2) CEILING LIVE LOADS DO NOT NEED TO BE APPLIED WITH ROOF LIVE LOADS.
- 3) REPETITIVE USE FACTOR IS 1.15 FOR MULTIPLE MEMBERS WITHIN 24" OF EACH OTHER AND FOR TRIPLE JOISTS.
- 4) DEFLECTION LIMITS USED HAVE BEEN DETERMINED THROUGH EXPERIENCE AND EXCEED THE REQUIREMENTS OF THE C.B.C.
- 5) LIVE LOAD REDUCTIONS MAY BE TAKEN PER C.B.C. TO A MAXIMUM OF 30% FOR FLOORS AND 40% FOR ROOFS
- 6) STANDARD CAMBER FOR GLU-LAMS IS 3500 FT. RADIUS PER WEYERHAEUSER CORPORATION.

ROOFSYSTEM	
MEMBER SPACING = 24 in.	MINIMUM NAILING: 8d AT 6" EDGE, AND 12" FIELD
LIVE LOADS REDUCED BY .06% FOR EACH SQL	JARE FOOT OVER 150 SF. TO A MAXIMUM OF 25% (40% FOR FLAT ROOFS)
USE 1/2" PLYWOOD OR O.S.B. WITH PANEL IN	DEX 24/16 (SEE LATERAL LOAD CALCULATIONS FOR ADDITIONAL NAILING)

TURUSSIDS AND 2011			
SPAN	22,0 ft.	(l)	
UNIFORM LOAD	70 plf.	(w)	
POINT LOAD @ .33 Span	0 lbs.	(P1)	
POINT LOAD @ 90 Span	0 lbs.	(P2)	
POINT LOAD @ .13 SpanL	0 lbs.	(P3)	
DIST. LOAD TO .20 Span	0 plf.	(w2)	
TRIANGULAR W 0 psf.	0 lbs.	(W)	
SHEAR (V) = 770 lbs	@ E	ND	
MOMENT (M) = 4235 ft.lbs.	max		
REACTION LEFT (R1) =	770 lbs.		
REACTION RIGHT (R2) =	770 lbs.		

HIP MASTER TRUSS			1947.000 1957.000	
SPAN	22.0	ft.	(l)	
UNIFORM LOAD	2 70	plf.	(w)	
POINT LOAD @ .33 SpanL_	. 0	lbs.	(P1)	
POINT LOAD @ .90 SpanL	. 0	lbs.	(P2)	
POINT LOAD @ .13 Span	. 0	lbs.	(P3)	
DIST. LOAD TO .50 Span 🚟	. 105	plf.	(w2)	
TRIANGULAR W 0 psf.	0	lbs.	(W)	· ·
SHEAR (V) = 1636 lbs		@ EN	D	
MOMENT (M) = 7808 ft.li	os. max -			
REACTION LEFT (R1) =	1636 I	bs.		
REACTION RIGHT (R2) =	1059 I	bs.		

2								
GIRDER TRUSS OVER M	ASTER BA	TH						3
SPAN	14.0 ft.	(1)	THE ENDOLOS	(IODIO IN 1	TODO			
UNIFORM LOAD								
POINT LOAD @ .50 SpanL_	_ 1600 lbs.							
POINT LOAD @ .90 SpanL	_ 0 lbs.		,					
POINT LOAD @ .13 Span								
DIST. LOAD TO .50 Span						7		
TRIANGULAR W 0 psf.								
	s @ El							
11	lbs. max						·	
REACTION LEFT (R1) =	3495 lbs.							mathematica (****
REACTION RIGHT (R2) =	2025 lbs.							
GIRDER TRUSS BACK B	AY WINDO	W						4
SPAN	8.0 ft	(1)	T	<u>Paparagas s</u>	Mendel Court regions	75 6 6		
UNIFORM LOAD		(w)						
POINT LOAD @ .50 Span								
POINT LOAD @ .90 Span						Property of the second	See Constitution and Co	A STATE OF THE STA
POINT LOAD @ .13 Span								•
DIST. LOAD TO .50 Span						+		
TRIANGULAR W 0 psf.			1					
	s, @ EN		1			1		*****
	bs. max							
REACTION LEFT (R1) =			Τ			Т		,
REACTION RIGHT (R2) =	1760 lbs.							
THE THE PROPERTY OF THE PROPER	1700 103.		•					
REACTION RIGHT (RZ) =	1700 103.							
BEAMONER RORCHES	1700 103.							5
	15.7 ft.	(1)	STRESS FACTORS	(Cx)		1 1)	6 x 10	5
BDAMEONER KORCHES	15.7 ft.	• • •	STRESS FACTORS WET SERVICE FACTOR	(Cx) (Cm)	1.00	1)	6 x 10	5
BEAM OVER KORCHES SPAN	15.7 ft. 230 plf.	(w)			1.00 1.25	1)	6 x 10 RWD.#1	5
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. +	15.7 ft. 230 plf. 0 lbs.	(w) (P1)	WET SERVICE FACTOR	(Cm)		1) Fv =	RWD.#1	100 psi.
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span	15.7 ft. 230 plf. 0 lbs.	(w) (P1) (P2)	WET SERVICE FACTOR LOAD DURATION FACT.	(Cm) (Cd)	1.25		RWD.#1 80 x (Cd) =	100 psi. 1219 psi.
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span POINT LOAD @ .13 Span	15.7 ft. 230 plf. 0 lbs. 0 lbs.	(w) (P1) (P2)	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR	(Cm) (Cd) (Cr)	1.25 1.00	Fv=	RWD.#1 80 x (Cd) = 975 x (Cx) =	•
BEAM OVER FORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span POINT LOAD @ .13 Span DIST. LOAD TO .20 Span	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 lbs.	(w) (P1) (P2) (P3) (w2)	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR	(Cm) (Cd) (Cr) (Cf)	1.25 1.00	Fv = Fb= E =	RWD.#1 80 x (Cd) =	1219 psi.
BEAM OVER FORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span POINT LOAD @ .13 Span DIST. LOAD TO .20 Span TRIANGULAR W 0 psf.	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 lbs. 0 plf. 0 plf.	(w) (P1) (P2) (P3) (w2) (W)	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR	(Cm) (Cd) (Cr) (Cf)	1.25 1.00 1.00 NA	Fv = Fb= E =	RWD.#1 80 x (Cd) = 975 x (Cx) = 1300000 psi, M FACTOR OF SAFETY	1219 psi.
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 lbs. 0 plf. 0 plf.	(w) (P1) (P2) (P3) (w2) (W)	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR LIVE LOAD REDUCTION	(Cm) (Cd) (Cr) (Cf)	1.25 1.00 1.00 NA 79 in.2	Fv = Fb= E = MINIMU	RWD.#1 80 x (Cd) = 975 x (Cx) = 1300000 psi,	1219 psi. ′ =1.04
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span POINT LOAD @ .13 Span DIST. LOAD TO .20 Span TRIANGULAR W 0 psf. SHEAR (V) = 1919 lbs MOMENT (M) = 7509 ft.lit	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 plf. 0 lbs. 0 plf. 0 lbs. 0 plf. 0 lbs.	(w) (P1) (P2) (P3) (w2) (W)	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR LIVE LOAD REDUCTION AREA REQUIRED = SECTION REQUIRED =	(Cm) (Cd) (Cr) (Cf)	1.25 1.00 1.00 NA	Fv = Fb= E = MINIMU	RWD.#1 80 x (Cd) = 975 x (Cx) = 1300000 psi, M FACTOR OF SAFETY 50.88 in. ² 78.43 in. ³	1219 psi. ' =1.04 177% (OK)
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 plf. 0 lbs. 0 plf. 0 lbs. 0 plf. 0 lbs.	(w) (P1) (P2) (P3) (w2) (W)	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR LIVE LOAD REDUCTION AREA REQUIRED =	(Cm) (Cd) (Cr) (Cf)	1.25 1.00 1.00 NA 79 in. ² 33 in. ³	Fv = Fb= E = MINIMU A = S =	RWD.#1 80 x (Cd) = 975 x (Cx) = 1300000 psi, M FACTOR OF SAFETY 50.88 in. ² 78.43 in. ³	1219 psi. ' =1.04 177% (OK) 106% (OK) 104% (OK)
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span POINT LOAD @ .13 Span DIST. LOAD TO .20 Span TRIANGULAR W 0 psf. SHEAR (V) = 1919 lbs MOMENT (M) = 7509 ft.lit	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 plf. 0 lbs. @ EN bs. max 1919 lbs.	(w) (P1) (P2) (P3) (w2) (W)	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR LIVE LOAD REDUCTION AREA REQUIRED = SECTION REQUIRED =	(Cm) (Cd) (Cr) (Cf)	1.25 1.00 1.00 NA 79 in. ² 33 in. ³	Fv = Fb= E = MINIMU S = I =	RWD.#1 80 x (Cd) = 975 x (Cx) = 1300000 psi. M FACTOR OF SAFETY 50.88 in. ² 78.43 in. ³ 362.75 in. ⁴	1219 psi. ' =1.04 177% (OK) 106% (OK) 104% (OK)
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 plf. 0 lbs. @ EN bs. max 1919 lbs.	(w) (P1) (P2) (P3) (w2) (W)	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR LIVE LOAD REDUCTION AREA REQUIRED = SECTION REQUIRED =	(Cm) (Cd) (Cr) (Cf)	1.25 1.00 1.00 NA 79 in. ² 33 in. ³	Fv = Fb= E = MINIMU S = I =	RWD.#1 80 x (Cd) = 975 x (Cx) = 1300000 psi. M FACTOR OF SAFETY 50.88 in. ² 78.43 in. ³ 362.75 in. ⁴	1219 psi. ' =1.04 177% (OK) 106% (OK) 104% (OK) 268
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 plf. 0 lbs. @ EN bs. max 1919 lbs.	(w) (P1) (P2) (P3) (w2) (W)	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR LIVE LOAD REDUCTION AREA REQUIRED = SECTION REQUIRED = STANDARD CAMBER =	(Cm) (Cd) (Cr) (Cf)	1.25 1.00 1.00 NA 79 in. ² 33 in. ³	Fv = Fb= E = MINIMU A = S = DEFLECT.=	RWD.#1 80 x (Cd) = 975 x (Cx) = 1300000 psi. M FACTOR OF SAFETY 50.88 in. ² 78.43 in. ³ 362.75 in. ⁴ 0.70 in. = L/	1219 psi. ' =1.04 177% (OK) 106% (OK) 104% (OK)
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span DIST. LOAD TO .20 Span TRIANGULAR W 0 psf. SHEAR (V) = 1919 lbs MOMENT (M) = 7509 ft.lt REACTION LEFT (R1) = REACTION RIGHT (R2) =	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 plf. 0 lbs. 1919 lbs. 1919 lbs.	(w) (P1) (P2) (P3) (w2) (W) ND	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR LIVE LOAD REDUCTION AREA REQUIRED = SECTION REQUIRED =	(Cm) (Cd) (Cr) (Cf) - - 28.7 73.9	1.25 1.00 1.00 NA 79 in. ² 33 in. ³	Fv = Fb= E = MINIMU S = I =	RWD.#1 80 x (Cd) = 975 x (Cx) = 1300000 psi. M FACTOR OF SAFETY 50.88 in. ² 78.43 in. ³ 362.75 in. ⁴ 0.70 in. = L/	1219 psi. ' =1.04 177% (OK) 106% (OK) 104% (OK) 268
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span POINT LOAD @ .13 Span DIST. LOAD TO .20 Span TRIANGULAR W 0 psf. SHEAR (V) = 1919 ibs MOMENT (M) = 7509 ft.li REACTION LEFT (R1) = REACTION RIGHT (R2) = TYPICAL HEADER SPAN	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 plf. 0 lbs. 1919 lbs. 1919 lbs. 3.2 ft. 440 plf.	(w) (P1) (P2) (P3) (w2) (W) ND	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR LIVE LOAD REDUCTION AREA REQUIRED = SECTION REQUIRED = STANDARD CAMBER =	(Cm) (Cd) (Cr) (Cf) - - 28.7 73.9	1.25 1.00 1.00 NA 79 in. ² 93 in. ³ NA	Fv = Fb= E = MINIMU A = S = DEFLECT.=	RWD.#1 80 x (Cd) = 975 x (Cx) = 1300000 psi. M FACTOR OF SAFETY 50.88 in. ² 78.43 in. ³ 362.75 in. ⁴ 0.70 in. = L/	1219 psi. ' =1.04 177% (OK) 106% (OK) 104% (OK) 268
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span POINT LOAD @ .13 Span DIST. LOAD TO .20 Span TRIANGULAR W 0 psf. SHEAR (V) = 1919 ibs MOMENT (M) = 7509 ft.li REACTION LEFT (R1) = REACTION RIGHT (R2) = TYPICAL HEADER SPAN UNIFORM LOAD 6 plf. +	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 plf. 0 lbs. 1919 lbs. 1919 lbs. 3.2 ft. 440 plf. 0 lbs.	(w) (P1) (P2) (P3) (w2) (W) ND (I) (w) (P1)	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR LIVE LOAD REDUCTION AREA REQUIRED = SECTION REQUIRED = STANDARD CAMBER = STRESS FACTORS WET SERVICE FACTOR	(Cm) (Cd) (Cr) (Cf) - - 28.7 73.9 (Cx) (Cm)	1.25 1.00 1.00 NA 79 in. ² 93 in. ³ NA	Fv = Fb= E = MINIMU A = S = DEFLECT.=	RWD.#1 80 x (Cd) = 975 x (Cx) = 1300000 psi, M FACTOR OF SAFETY 50.88 in.² 78.43 in.³ 362.75 in.⁴ 0.70 in. = L/	1219 psi. ' =1.04 177% (OK) 106% (OK) 104% (OK) 268
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span POINT LOAD @ .13 Span DIST. LOAD TO .20 Span TRIANGULAR W 0 psf. SHEAR (V) = 1919 ibs MOMENT (M) = 7509 ft.li REACTION LEFT (R1) = REACTION RIGHT (R2) = TYPICAL HEADER SPAN UNIFORM LOAD 6 plf. + POINT LOAD @ .33 Span	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 plf. 0 lbs. 1919 lbs. 1919 lbs. 3.2 ft. 440 plf. 0 lbs.	(w) (P1) (P2) (P3) (w2) (W) ND (I) (w) (P1) (P2)	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR LIVE LOAD REDUCTION AREA REQUIRED = SECTION REQUIRED = STANDARD CAMBER = STRESS FACTORS WET SERVICE FACTOR LOAD DURATION FACT.	(Cm) (Cd) (Cr) (Cf) - - 28.7 73.9 (Cx) (Cm) (Cd)	1.25 1.00 1.00 NA 79 in. ² 93 in. ³ NA	Fv = Fb= E = MINIMU A = S = DEFLECT.=	RWD.#1 80 x (Cd) = 975 x (Cx) = 1300000 psi. M FACTOR OF SAFETY 50.88 in. ² 78.43 in. ³ 362.75 in. ⁴ 0.70 in. = L / DF #2 95 x (Cd) =	1219 psi. ' =1.04 177% (OK) 106% (OK) 104% (OK) 268
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span DIST. LOAD TO .20 Span TRIANGULAR W 0 psf. SHEAR (V) = 1919 ibs MOMENT (M) = 7509 fl.li REACTION LEFT (R1) = REACTION RIGHT (R2) = TYPICAL HEADER SPAN UNIFORM LOAD 6 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 plf. 0 lbs. 1919 lbs. 1919 lbs. 3.2 ft. 440 plf. 0 lbs. 0 lbs. 0 lbs.	(w) (P1) (P2) (W) (V) (V) (V) (V) (V) (V) (V) (V) (V) (V	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR LIVE LOAD REDUCTION AREA REQUIRED = SECTION REQUIRED = STANDARD CAMBER = STRESS FACTORS WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR	(Cm) (Cd) (Cr) (Cf) - - 28.7 73.9 (Cx) (Cm) (Cd) (Cr)	1.25 1.00 1.00 NA 79 in. ² 93 in. ³ NA	Fv = Fb= E = MINIMU A =	RWD.#1 80 x (Cd) = 975 x (Cx) = 1300000 psi. M FACTOR OF SAFETY 50.88 in. ² 78.43 in. ³ 362.75 in. ⁴ 0.70 in. = L / DF #2 95 x (Cd) = 875 x (Cx) =	1219 psi. ' =1.04 177% (OK) 106% (OK) 104% (OK) 268 6
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span POINT LOAD @ .13 Span DIST. LOAD TO .20 Span TRIANGULAR W 0 psf SHEAR (V) = 1919 ibs MOMENT (M) = 7509 fl.li REACTION LEFT (R1) = REACTION RIGHT (R2) = TYPICAL HEADER SPAN UNIFORM LOAD 6 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span POINT LOAD @ .13 Span DIST. LOAD TO .20 Span DIST. LOAD TO .20 Span	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 lbs. 0 lbs. 1919 lbs. 1919 lbs. 3.2 ft. 440 plf. 0 lbs. 0 lbs. 0 lbs.	(w) (P1) (P2) (W) (W) (P1) (P2) (P3) (w2) (P3) (w2)	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR LIVE LOAD REDUCTION AREA REQUIRED = SECTION REQUIRED = STANDARD CAMBER = STRESS FACTORS WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR	(Cm) (Cd) (Cr) (Cf) - - 28.7 73.9 (Cx) (Cm) (Cd) (Cr) (Cf)	1.25 1.00 1.00 NA 79 in. ² 93 in. ³ NA 1.00 1.25 1.00 1.30	Fv = Fb= E = MINIMU A = I = DEFLECT.= 1) Fv = Fb= E =	RWD.#1 80 x (Cd) = 975 x (Cx) = 1300000 psi. M FACTOR OF SAFETY 50.88 in.² 78.43 in.³ 362.75 in.⁴ 0.70 in. = L / DF#2 95 x (Cd) = 875 x (Cx) = 16000000 psi.	1219 psi. ' =1.04 177% (OK) 106% (OK) 104% (OK) 268 6 119 psi. 1422 psi.
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span DIST. LOAD TO .20 Span TRIANGULAR W 0 psf SHEAR (V) = 1919 ibs MOMENT (M) = 7509 ft.ll REACTION LEFT (R1) = REACTION RIGHT (R2) = TYPICAL HEADER SPAN UNIFORM LOAD 6 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span POINT LOAD @ .13 Span DIST. LOAD TO .20 Span TRIANGULAR W 0 psf TRIANGULAR W 0 psf TRIANGULAR W 0 psf	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 lbs. 0 lbs. 1919 lbs. 1919 lbs. 3.2 ft. 440 plf. 0 lbs. 0 lbs. 0 lbs.	(w) (P1) (P2) (W) (W) (P1) (P2) (P3) (w2) (W) (P1) (P2) (P3) (w2) (W)	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR LIVE LOAD REDUCTION AREA REQUIRED = SECTION REQUIRED = STANDARD CAMBER = STRESS FACTORS WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR	(Cm) (Cd) (Cr) (Cf) - - 28.7 73.9 (Cx) (Cm) (Cd) (Cr) (Cf)	1.25 1.00 1.00 NA 79 in. ² 93 in. ³ NA 1.00 1.25 1.00 1.30	Fv = Fb= E = MINIMU A = I = DEFLECT.= 1) Fv = Fb= E =	RWD.#1 80 x (Cd) = 975 x (Cx) = 1300000 psi. M FACTOR OF SAFETY 50.88 in.² 78.43 in.³ 362.75 in.⁴ 0.70 in. = L / 4 x 6 DF #2 95 x (Cd) = 875 x (Cx) = 1600000 psi. M FACTOR OF SAFETY	1219 psi. ' =1.04 177% (OK) 106% (OK) 268 6 119 psi. 1422 psi. =2.14
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span DIST. LOAD TO .20 Span TRIANGULAR W 0 psf SHEAR (V) = 1919 ibs MOMENT (M) = 7509 ft.li TYPICAL HEADER SPAN UNIFORM LOAD 6 plf. + POINT LOAD @ .33 Span POINT LOAD @ .33 Span POINT LOAD @ .90 Span POINT LOAD @ .90 Span DIST. LOAD TO .20 Span TRIANGULAR W 0 psf SHEAR (V) = 713 ibs.	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 plf. 0 lbs. 1919 lbs. 1919 lbs. 3.2 ft. 440 plf. 0 lbs. 0 lbs. 0 lbs. 0 lbs. 0 lbs.	(w) (P1) (P2) (W) (W) (P1) (P2) (P3) (w2) (W) (P1) (P2) (P3) (W2) (W) (ND	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR LIVE LOAD REDUCTION AREA REQUIRED = SECTION REQUIRED = STANDARD CAMBER = STRESS FACTORS WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR LIVE LOAD REDUCTION AREA REQUIRED =	(Cm) (Cd) (Cr) (Cf) - - 28.7 73.9 (Cx) (Cm) (Cd) (Cr) (Cf) - - -	1.25 1.00 1.00 NA 79 in. ² 93 in. ³ NA 1.00 1.25 1.00 1.30 NA	Fv = Fb= E = MINIMU	RWD.#1 80 x (Cd) = 975 x (Cx) = 1300000 psi. M FACTOR OF SAFETY 50.88 in.² 78.43 in.³ 362.75 in.⁴ 0.70 in. = L / 4 x 6 DF #2 95 x (Cd) = 875 x (Cx) = 1600000 psi. M FACTOR OF SAFETY 19.25 in.²	1219 psi. ' =1.04 177% (OK) 106% (OK) 268 6 119 psi. 1422 psi. =2.14 214% (OK)
BEAM OVER PORCHES SPAN UNIFORM LOAD 15 plf. + POINT LOAD @ .33 Span POINT LOAD @ .90 Span DIST. LOAD TO .20 Span TRIANGULAR W 0 psf SHEAR (V) = 1919 ibs MOMENT (M) = 7509 ft.ll TYPICAL HEADER SPAN UNIFORM LOAD 6 plf. + POINT LOAD @ .33 Span POINT LOAD @ .33 Span POINT LOAD @ .90 Span POINT LOAD @ .90 Span DIST. LOAD TO .20 Span TRIANGULAR W 0 psf SHEAR (V) = 713 ibs.	15.7 ft. 230 plf. 0 lbs. 0 lbs. 0 lbs. 1919 lbs. 1919 lbs. 3.2 ft. 440 plf. 0 lbs. 0 lbs. 0 lbs. 3.2 ft. 440 plf. 0 lbs. 0 lbs. 0 lbs. 0 lbs. 0 lbs.	(W) (P1) (P2) (W) (P1) (P2) (P3) (W2) (W) (P1) (P2) (P3) (W2) (W) IND	WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR LIVE LOAD REDUCTION AREA REQUIRED = SECTION REQUIRED = STANDARD CAMBER = STRESS FACTORS WET SERVICE FACTOR LOAD DURATION FACT. REP. USE FACTOR SIZE FACTOR	(Cm) (Cd) (Cr) (Cf) - - 28.7 73.9 (Cx) (Cm) (Cd) (Cr) (Cf) - - -	1.25 1.00 1.00 NA 79 in. ² 93 in. ³ NA 1.00 1.25 1.00 1.30	Fv = Fb= E = MINIMU A = DEFLECT.= Fv = Fb= E = MINIMU A =	RWD.#1 80 x (Cd) = 975 x (Cx) = 1300000 psi. M FACTOR OF SAFETY 50.88 in.² 78.43 in.³ 362.75 in.⁴ 0.70 in. = L / 4 x 6 DF #2 95 x (Cd) = 875 x (Cx) = 1600000 psi. M FACTOR OF SAFETY	1219 psi. ' =1.04 177% (OK) 106% (OK) 104% (OK) 268 6 119 psi. 1422 psi.

FEOORSYSTEM						
MEMBER SPACING =	16 in.	11.001	MINIMUM NAILING:	8d AT 6" EDGE	, AND 12" FIELD (WITH	GLUE)
LIVE LOADS REDUCED B	Y .08% FOR EACH	SQUARE FOOT OVER 15	O SF. TO A MAXIM	UM OF 40%		
USE 3/4" T. & G. PLYWO	OOD OR O.S.B. WIT	H PANEL INDEX 40/20	(SEE LATERAL LOA	AD CALCULATION	NS FOR ADDITIONAL NA	ILING)

2ND FLOOR	OISTS AT I	5 m	aldres as				- 42 da m) n b ray w		7
SPAN		15.7 ft.	(1)	STRESS FACTORS	(Cx)		1)	2 x 12	
UNIFORM LOAD		72 plf.	(w)	WET SERVICE FACTOR	(Cm)	1.00			
POINT LOAD @ .	.33 Span <u> </u>	0 lbs.	(P1)	LOAD DURATION FACT.	(Cd)	1.00		DF #2	
POINT LOAD @ .	.90 Span <u>I</u>	. 0 lbs.	(P2)	REP. USE FACTOR	(Cr)	1.15	Fv≔	95 x (Cd) =	95 psi.
POINT LOAD @ .	.13 SpanL	. 0 lbs.	(P3)	SIZE FACTOR	(Cf)	1.00	Fb≔	875 x (Cx) =	1006 psi.
DIST. LOAD TO .	.20 Span 🔤	. 0 plf.	(w2)		-		E =	1600000 psi.	
TRIANGULAR W	0 psf.	0 lbs.	(W)	LIVE LOAD REDUCTION		NA	MINIMUR	M FACTOR OF SAFE	TY =1.20
SHEAR (V) =	565 lbs	@ EN	N D	AREA REQUIRED =	8.9	2 in.2	A =	16.88 in.2	189% (OK)
MOMENT (M) =	2218 ft.ll	s. max		SECTION REQUIRED =	26.4	6 in.3	S =	31.64 _{in.} 3	120% (OK)
REACTION LEFT	(R1) =	565 lbs.		STANDARD CAMBER =		NA	[=	177.98 in.4	142% (OK)
REACTION RIGHT	(R2) =	565 lbs.					DEFLECT.=	0.35 in. = L	545

BEAM UNDE	R WALL	OVER	IJV	NG	ROO	M. S.						8
SPAN			12.0	ft.	(1)	STRESS FACTORS	(Cx)			l) 3 1/2 x 11	1/4	
UNIFORM LOAD	12 plf. + 🗉		520	plf.	(w)	WET SERVICE FACTOR	(Cm)	1.00				
POINT LOAD @	.33 Span _	Щ.	0	lbs.	(P1)	LOAD DURATION FACT.	(Cd)	1.25		PARALLAM	PSL	
POINT LOAD @	.90 Span _		0	lbs.	(P2)	REP. USE FACTOR	(Cr)	1.00	Fv	= 290 x ((Cd) =	363 psi.
POINT LOAD @	.13 Span _		0	lbs.	(P3)	VOLUME FACTOR	(Cv)	1.00	Ft	e 2900 x (Cx) =	3625 psi.
DIST. LOAD TO	.20 Span 🗉		0	plf.	(w2)		-		E	= 2000000 psi		
TRIANGULAR W	0 psf		0	lbs.	(W)	LIVE LOAD REDUCTION	-	NA	MIN	MUM FACTOR OF	SAFET	Y =1.87
SHEAR (V) =	3191	l ibs		@ EN	I D	AREA REQUIRED =	13.2	20 in.2	A =	39.38 in.²		298% (OK)
MOMENT (M) =	9573	ft.lbs.	max			SECTION REQUIRED =	31.6	59 in.3	S =	: 73.83 in.³		233% (OK)
REACTION LEFT	(R1) =		3191	lbs.		STANDARD CAMBER =		NA	=	415.28 in.4		187% (OK)
REACTION RIGHT	Γ (R2) =		3191	lbs.					DEFLECT.	= 0.30 in,	= L/	482

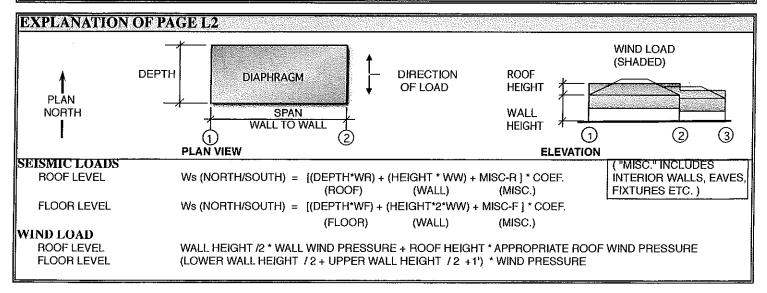
BEAMFUNDER WALL	OVERMINE	HEN						9
SPAN	16.0 ft	. (1)	STRESS FACTORS	(Cx)		1)	5 1/4 x 11 1/4	200000000000000000000000000000000000000
UNIFORM LOAD 18 pif. + 🗉	345 p	if. (w)	WET SERVICE FACTOR	(Cm)	1.00	\$ 25 7 F Sec		35.65 15.65 160
POINT LOAD @ .44 Span _	998 lb	s. (P1)	LOAD DURATION FACT.	(Cd)	1.25	P	ARALLAM PSL	
POINT LOAD @ .90 Span _	0 lb	s. (P2)	REP. USE FACTOR	(Cr)	1.00	Fv≃	290 x (Cd) =	363 psi.
POINT LOAD @ .13 Span _	0 lb	s. (P3)	VOLUME FACTOR	(Cv)	1.00	Fb=	2900 x (Cx) =	3625 psi.
DIST. LOAD TO .44 Span 🛭	<u>⊠</u> 175 pl	lf. (w2)		-		E =	2000000 psi.	
TRIANGULAR W 0 psf	0 lb	s. (W)	LIVE LOAD REDUCTION	-	NA	MINIMUM	I FACTOR OF SAFET	/ =1.19
SHEAR $(V) = 4420$	lbs@	END	AREA REQUIRED =	18.2	9 in.²	A=	59.06 in.²	323% (OK)
MOMENT (M) = 18154	ft.lbs. max	*********	SECTION REQUIRED =	60.0	9 in,³	S =	110.74 in.³	184% (OK)
REACTION LEFT (R1) =	4420 lbs	S.	STANDARD CAMBER =		NA	l =	622.92 in.4	119% (OK)
REACTION RIGHT (R2) =	3606 lbs	S.			1	DEFLECT.=	0.63 in. = L/	306

CHECK SUPPOR	ET FOR	BEAM	UNDER WALLOVER KITCH	EN	
POST	LOAD =	4420 lbs.	EFFECTIVE LENGTH le=	9.0 ft.	1) 4 x 6 NOMINAL
LOAD FROM 2ND	BEAM =	3191 lbs.	COL. STABILITY FACT. Cp=	0.287	DF #2 POST
MISC.	LOAD =	0 lbs.	ALLOWABLE STRESS Fc'=	467 psi.	GOOD FOR 8981 lbs. (OK)
TOTAL LOAD ON	POST =	7611 lbs.			FACTOR OF SAFETY = 1.18
FOUNDATION			CLASS 5 SOIL	1000 psf.	36 in. x 36 in.
MISC	LOAD =	0 lbs.	INCREASE FOR WIDTH	0%	FOOTING
FOOTING W	EIGHT =	150 lbs.	INCREASE FOR DEPTH	0%	GOOD FOR 9000 lbs. (OK)
TOTAL LOAD ON FO	DUND. =	7761 lbs.	ALLOWABLE BEARING PRESS.	1000 psf.	FACTOR OF SAFETY = 1.16

SPAN			12.5	ft.	(1)	STRESS FACTORS	(Cx)	TCDO -	1)	2 x 12	
UNIFORM LOAD			72	plf.	(w)	WET SERVICE FACTOR	(Cm)	1.00			
POINT LOAD @ .	13 Span		441	ibs.	(P1)	LOAD DURATION FACT.	(Cd)	1.25		DF #2	25 (\$3) (\$2) (\$2)
POINT LOAD @ .	90 Span		0	lbs.	(P2)	REP. USE FACTOR	(Cr)	1.15	Fv =	95 x (Cd) =	119 psi.
POINT LOAD @ .	13 Span		0	lbs.	(P3)	SIZE FACTOR	(Cf)	1.00	Fb=	875 x (Cx) =	1258 psi.
DIST. LOAD TO .	20 Span		0	plf.	(w2)				E =	1600000 psi,	
TRIANGULAR W	0 psf.		0	lbs.	(W)	LIVE LOAD REDUCTION	•	NA	MINIMUM	A FACTOR OF SAFET	Y =1.60
SHEAR (V) =	83	34 lbs		@ EN	ID	AREA REQUIRED =	10.5	53 in.2	A =	16.88 in.2	160% (OH
MOMENT (M) =	203	30 ft.lbs.	max			SECTION REQUIRED =	19.3	36 in.3	S =	31.64 in.ª	163% (OK
REACTION LEFT	(R1) =		834	lbs.		STANDARD CAMBER =		NA	=	177.98 in.4	310% (OK
REACTION RIGHT	(R2) =		507	lbs.		1			DEFLECT.=	0.16 in. = L/	931

2ND FLOOR.	OISTS WITH	GIRI)ER	TRUS	SS LOAD					11
SPAN		12.5	ft.	(1)	STRESS FACTORS	(Cx)		(3)	2 x 12	
UNIFORM LOAD	15 plf. + 🚐 🚾	72	plf.	(w)	WET SERVICE FACTOR	(Cm)	1.00			
POINT LOAD @ .	.15 Span	2158	lbs.	(P1)	LOAD DURATION FACT.	(Cd)	1.25		DF #2	
POINT LOAD @ .	.90 Span	0	lbs.	(P2)	REP. USE FACTOR	(Cr)	1.15	Fv =	95 x (Cd) =	119 psi.
POINT LOAD @ .	.13 Span	0	lbs.	(P3)	SIZE FACTOR	(Cf)	1.00	Fb=	875 x (Cx) =	1258 psi.
DIST. LOAD TO .	20 Span 📨	0	plf.	(w2)		-] E=	1600000 psi.	
TRIANGULAR W	0 psf	0	lbs.	(W)	LIVE LOAD REDUCTION	-	NA	MINIMUN	I FACTOR OF SAFET	ΓY =1.69
SHEAR (V) =	2371 lbs		@ EN	ID	AREA REQUIRED =	29.9	5 in.2	A =	50.63 in. ²	169% (OK)
MOMENT (M) =	5214 ft.lbs	. max			SECTION REQUIRED =	49.7	5 in.³	S =	94.92 in.3	191% (OK)
REACTION LEFT	(R1) =	2371	bs.		STANDARD CAMBER =		NA	=	533.94 in.4	479% (OK)
REACTION RIGHT	(R2) =	877	lbs.					DEFLECT.=	0.10 in. = L./	1439

DOTRIDOLOG	OR JOISTSA	MILHER	KOOF I	OADS			1919 - 1919 (1939) 231 - 1919 250 (1939 - 1919)			12
SPAN		12.5	ft. (i	STRESS FACTORS	(Cx)			3)	2 x 12	
UNIFORM LOAD	15 plf. + ======	370	plf. (w	WET SERVICE FACTOR	(Cm)	1.00	145		500 JAC 6 A S	
POINT LOAD @ .1	15 Span	0	lbs. (P1	LOAD DURATION FACT.	(Cd)	1.25		A. 650 (A. 57)	DF#2	
POINT LOAD @ .9	90 Span	0	lbs. (P2	REP. USE FACTOR	(Cr)	1.15		Fv=	95 x (Cd)	= 119 psi.
POINT LOAD @ .1	13 Span	0 1	lbs. (P3	SIZE FACTOR	(Cf)	1.00		Fb=	875 x (Cx)	= 1258 psi.
DIST. LOAD TO .2	20 Span 🛌	0	plf. (w2)	-			E =	1600000 psi.	
TRIANGULAR W	0 psf.	0 1	ibs. (W	LIVE LOAD REDUCTION	-	NA		MINIMUN	A FACTOR OF SAF	ETY =1.32
SHEAR (V) =	2407 lbs.	(@ END	AREA REQUIRED =	30.4	11 in.²		A=	50.63 _{[n.²}	166% (OK)
MOMENT (M) =	7523 ft.lbs	s. max		SECTION REQUIRED =	71.7	⁷⁷ jn.³		- S=	94.92 _{in.} 3	132% (OK)
REACTION LEFT	(R1) =	2407 lt	os.	STANDARD CAMBER =		NA		=	533.94 in.4	202% (OK)
REACTION RIGHT	(R2) =	2407 lb	os.				DEF	LECT.=	0.25 in. =	L/ 606

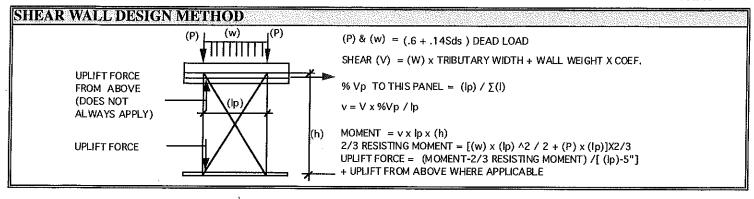

(CYANNI HIB BAYI DRAIDEO(O)	DESTANCY INCOME.			and should not a debile only perm		13
		Terproof, orono		1	A46	
MAIN SPAN LENGTH	7.0 ft.	STRESS FACTORS	(Cx)	1)	2 x 12	SPAN
CANTILEVER LENGTH	3.6 ft.	SIZE FACTOR	(Cf) 1.00	1)	2 x 12	CANT,
W MAIN SPAN MAX.	72 plf.	LOAD DURATION FACTO	R (Cd) 1.25		DF#2	
W MAIN SPAN MIN.	15 plf.	REP. USE FACTOR	(Cr) 1.15	Fv =	95 x (Cd) =	119 psi.
W CANTILEVER MAX.	72 plf.		Р.	Fb=	875 x (Cx) =	1258 psi.
W CANTILEVER MIN.	15 plf.		11 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E =	1600000 psi.	
POINT LOAD @ END max.	649 lbs.	R1 ∓	R2 ₹	MINIMUM	FACTOR OF SAFETY	= =1.48
POINT LOAD @ END min	404 lbs.	THIS PROGRAM CHEC	KS ALL LOADING CA	SES ON BOTH	SPANS AND	
		GIVES THE SOLUTION	FOR WORST CASE.			
SHEAR (MAIN SPAN)	647 lbs	AREA REQUIRED =	8.17 sq. in.	A =	16.88 sq. in.	(OK)
SHEAR (CANT)	904 lbs	AREA REQUIRED =	11.42 sq. in.	A =	16.88 sq. in.	(OK)
MOMENT (MAIN SPAN)	-330 ft. lbs	SECTION REQUIRED =	-2.52 cu. in.	S =	31.64 cu. in.	(OK)
MOMENT (CANT)	2756 ft. lbs.	SECTION REQUIRED =	26.30 cu. in.	S =	31.64 cu. in.	(OK)
			SPAN -	t =	177.98 in.^4	
			CANT	. ==	177.98 in.^4	
REACTIONS					_	
SIMPLE END	CANTILEVER END	DEFLECTION (CANT. END),TOTAL LOAD) =	0.18	= L / 240	CHECK
R1 MAX= 30 lbs	R2 MAX= 1551 lbs	DEFLECTION (CANT. EN	ID, LIVE LOAD) =	0.08	= L / 535	(OK)
R1 MID = -146 lbs	R2 MID = 928 lbs	DEFLECTION (MAIN SPAI	N,TOTAL LOAD)=	-0.04	= L. / -2085	(OK)
R1 MIN = -344 lbs	R2 MIN = 272 lbs		·			

ADD DOUBLE JOISTS AT POINT LOADS FROM HEADER TO REDUCE DEFLECTION

HEADER UNDER CANTIE	EVER	WAR ST						14
SPAN	8.2 ft.	(1)	STRESS FACTORS	(Cx)	TODO	1)	3 1/2 x 11 7/8	
UNIFORM LOAD 12 plf. +	1184 plf.	(w)	WET SERVICE FACTOR	(Cm)	1.00			
POINT LOAD @ .44 Span	0 lbs.	(P1)	LOAD DURATION FACT,	(Cd)	1.00	P	ARALLAM PSI	
POINT LOAD @ .90 Span	0 lbs.	(P2)	REP. USE FACTOR	(Cr)	1.00	Fv=	290 x (Cd) =	290 psi.
POINT LOAD @ .13 Span	0 lbs.	(P3)	VOLUME FACTOR	(Cv)	1.00	Fb=	2900 x (Cx) =	2900 psi.
DIST. LOAD TO .44 Span	0 plf.	(w2)		-		E =	2000000 psi.	
TRIANGULAR W 0 psf.	0 lbs.	(W)	LIVE LOAD REDUCTION	-	NA	MINIMUI	M FACTOR OF SAFE	TY =1.64
SHEAR (V) = 4904 lbs	@ EN	1D	AREA REQUIRED =	25.3	36 in.²	A =	41.56 in.2	164% (OK)
MOMENT (M) = 10052 ft.lbs	. max		SECTION REQUIRED =	41.6	30 in.3	S =	82.26 _{in.} 3	198% (OK)
REACTION LEFT (R1) =	4904 lbs.		STANDARD CAMBER =		NA	1 =	488.41 in.4	239% (OK)
REACTION RIGHT (R2) =	4904 lbs.					DEFLECT.=	0.12 in. = L	/ 790

TRUBER OF TANK BACK OF	CANTILLEY	CR				15
SPAN	12.0 ft. (I)	STRESS FACTORS	·(Cx)	3)	2 x 12	
UNIFORM LOAD 15 plf. +	254 plf. (w)	WET SERVICE FACTOR	(Cm) 1.00			
POINT LOAD @ .44 Span	0 lbs. (P1)	LOAD DURATION FACT.	(Cd) 1.00		DF #2	
POINT LOAD @ .90 Span	0 lbs. (P2)	REP. USE FACTOR	(Cr) 1.15	Fv=	95 x (Cd) =	95 psi.
POINT LOAD @ .13 Span	0 lbs. (P3)	SIZE FACTOR	(Cf) 1.00	Fb=	875 x (Cx) =	1006 psi.
DIST. LOAD TO .44 Span 🔤	0 plf. (w2)		-	T E =	1600000 psi.	·
TRIANGULAR W 0 psf.	0 lbs. (W)	LIVE LOAD REDUCTION	- NA	MINIMUN	I FACTOR OF SAFET	Y =1.64
SHEAR (V) = 1616 lbs	@ END	AREA REQUIRED =	25.51 in.²	A =	50.63 in.2	198% (OK)
MOMENT (M) = 4848 ft.lbs.	max	SECTION REQUIRED =	57.81 in.3	S =	94.92 in.3	164% (OK)
REACTION LEFT (R1) =	1616 lbs.	STANDARD CAMBER =	NA	=	533.94 in.4	255% (OK)
REACTION RIGHT (R2) =	1616 lbs.			DEFLECT.≂	0.15 in. = L/	979

LATERAL LOAD CALCULATIONS 14.39844											
WIND LOAD	2013 C.B.C.	ASCE 7-10									
Basic Parameters	and the second s		Professional province and an experience	en e							
Risk Category	II	Table 1.5-1	MAXIMU	JM ROOF HEIGHT	= 2	0.7 ft.					
Basic Wind Speed, V	110 mph	Figure 26.5-1A ,		LOPE =	20	6.6 degrees					
Wind Directionality Factor, K₀	0.85	Table 26.6-1	NUMBE	R OF FLOORS =		2					
Exposure Category	C	Section 26.7									
Topographic Factor, K _{xt} Gust Effect Factor, G or G,	1.00 0.836	Section 26.8									
Enclosure Classification	Enclosed	Section 26.9 Section 26.10									
Internal Pressure Coefficient, GC	+/- 0.18	Table 26.11-1									
Terrain Exposure Constant, a	9.5	Table 26.9-1									
Terrain Exposure Constant, a	900 ft	Table 26.9-1									
,,		14010 20.0 1									
LRFD WIND PRESSURES WALL	26.8 psf.	ROOF 13.1 psf.	"lo	ad & resistance fac	tor design"						
		PSF RESPECTIVELY			J						
ASD WIND PRESSURES WALL	16.1 psf.	ROOF 7.9 psf.		"allowable stress	design"						
ASD FACTOR = 0.6	FOR USE WIT	TH WOOD SHEARWALLS									
SEISMIC COEFFICIENT		ASCE 7-10	DESIGN	CATEGORY	D						
2013 CBC. STATIC FORCE PROCEDURE		IRREGULAR STRUCTURE									
LATITUDE = 37.67863											
LONGITUDE = -121.77613	0:TE 0: 100 D										
FROM U.S.G.S. Ss = 1.524	SITE CLASS D		4.55		1.00	-					
FROM U.S.G.S. Ss = 1.524 WEB SITE S1 = 0.6		1.00 Sms = 1.50 Sm1 =	1.52 0.90	Sds = Sd1 =	1.02 0.60						
		1.50 5111 =	0.90	. 501=	0.00						
R = 6.5			•								
Cs= Sds x I / R =	0.156	T									
		CS NOT LESS THAN	0.05	Cs NEED NO	OT EXCEED	0.476					
p = 1.3	NON REDUND	Cs NOT LESS THAN ANT	0.05	Cs NEED NO	OT EXCEED	0.476					
	NON REDUND	ANT		Cs NEED NO 2 STORY	OT EXCEED	0.476					
p = 1.3	NON REDUND	ANT ION REQUIRED SEE BEI	<u>LO</u> W			0.476					
p = 1.3 F = 1 LRFD COEFFICIENT	NON REDUND REDISTRIBUT Qe = p F Cs =	ANT ION REQUIRED SEE BEI 0.203 x W	<u>LO</u> W	2 STORY ad & resistance fact	or design"	0.476					
p = 1.3 F = 1 LRFD COEFFICIENT ASD COEFFICIENT	NON REDUND REDISTRIBUT Qe = p F Cs =	ANT ION REQUIRED SEE BEI 0.203 x W 0.142 x W	<u>LO</u> W	2 STORY	or design"	0.476					
p = 1.3 F = 1 LRFD COEFFICIENT	NON REDUND REDISTRIBUT Qe = p F Cs =	ANT ION REQUIRED SEE BEI 0.203 x W	<u>LO</u> W	2 STORY ad & resistance fact	or design"	0.476					
p = 1.3 F = 1 LRFD COEFFICIENT ASD COEFFICIENT	NON REDUND REDISTRIBUT Qe = p F Cs = .7 Qe = FOR USE WIT	ANT ION REQUIRED SEE BE 0.203 x W 0.142 x W H WOOD SHEARWALLS	<u>LO</u> W	2 STORY ad & resistance fact "allowable stress o	or design" lesign"	0.476					
p = 1.3 F = 1 LRFD COEFFICIENT ASD COEFFICIENT ASD FACTOR = 0.7 CT = 0.02	NON REDUND REDISTRIBUT Qe = p F Cs = .7 Qe = FOR USE WIT	ANT ION REQUIRED SEE BEI 0.203 x W 0.142 x W H WOOD SHEARWALLS 0.75 H	LOW "lo	2 STORY ad & resistance fact "allowable stress o	or design"	0.476					
p = 1.3 F = 1 LRFD COEFFICIENT ASD COEFFICIENT ASD FACTOR = 0.7	NON REDUND REDISTRIBUT Qe = p F Cs = .7 Qe = FOR USE WIT	ANT ION REQUIRED SEE BEI 0.203 x W 0.142 x W H WOOD SHEARWALLS 0.75 H	LOW "lo	2 STORY ad & resistance fact "allowable stress o	or design" lesign"	0.476					
p = 1.3 F = 1 LRFD COEFFICIENT ASD COEFFICIENT ASD FACTOR = 0.7 CT = 0.02	NON REDUND REDISTRIBUT Qe = p F Cs = .7 Qe = FOR USE WIT x = 0	ANT ION REQUIRED SEE BEI 0.203 x W 0.142 x W H WOOD SHEARWALLS 0.75 H	LOW "lo	2 STORY ad & resistance fact "allowable stress o	tor design" lesign" 0.194						
p = 1.3 F = 1 LRFD COEFFICIENT ASD COEFFICIENT ASD FACTOR = 0.7 CT = 0.02 WEIGHTS OF MATERIALS USED IN SI	NON REDUND REDISTRIBUT Qe = p F Cs = .7 Qe = FOR USE WIT x = 0 EISMIC CALC 17 psf.	ANT ION REQUIRED SEE BEI 0.203	LOW "lo. = 20.7	2 STORY ad & resistance fact "allowable stress of t =	tor design" lesign" 0.194	R) 90 plf.					
P = 1.3 F = 1 LRFD COEFFICIENT ASD COEFFICIENT ASD FACTOR = 0.7 CT = 0.02 WEIGHTS OF MATERIALS USED IN SI ROOF DEAD LOAD (WR)	NON REDUND REDISTRIBUT Qe = p F Cs = .7 Qe = FOR USE WIT x = 0 EISMIC CALC 17 psf. 14 psf.	ANT ION REQUIRED SEE BEI 0.203	LOW "lo. = 20.7	2 STORY ad & resistance fact "allowable stress of t =	tor design" lesign" 0.194	R) 90 plf.					


BU	ILDII	VG I	EFINITIO	N TABLE							
	2ND LEVEL NORTH SOUTH	ŧ	SPAN WALL TO WALL	DEPTH OF DIAPH. FOR LOAD	DEPTH OF DIAPH. FOR STRESS	WEIGHT OF DIAPH.	AVERAGE PERP. WALL WEIGHT	WALL HEIGHT	GABLE HEIGHT ABOVE PLATE	ROOF HEIGHT SLOPED	
1 2 3 4	TO TO TO TO	2 3 4 5	17 ft. 12 ft. 12 ft. 17 ft.	27 ft. 27 ft. 27 ft. 27 ft.	27 ft. 27 ft. 27 ft. 27 ft.	17 psf. 17 psf. 17 psf. 17 psf.	16 psf. 16 psf. 16 psf. 16 psf.	8 ft. 8 ft. 8 ft. 8 ft.	4 ft. 4 ft.	4 ft. 7 ft. 7 ft. 4 ft.	
Ā	AST WE	ST	27 ft.	28 ft.	28 ft.	17 psf.	16 psf.	8 ft.	3 ft.	3 ft.	
	LEVEL NORTH SOUTH	l	SPAN WALL TO WALL	DEPTH OF DIAPH. FOR LOAD	DEPTH OF DIAPH. FOR STRESS	WEIGHT OF DIAPH.	AVEHAGE PERP. WALL WEIGHT	WALL HEIGHT	GABLE HEIGHT ABOVE PLATE	ROOF HEIGHT SLOPED	
1 2 3 4	TO TO TO TO	1 2 3 4 5	6 ft. 17 ft. 12 ft. 12 ft. 17 ft.	30 ft. 36 ft. 30 ft. 30 ft. 36 ft.	30 ft. 36 ft. 30 ft. 30 ft. 36 ft.	17 psf. 14 psf. 14 psf. 14 psf. 14 psf.	16 psf. 16 psf. 16 psf. 16 psf. 16 psf.	9 ft. 9 ft. 9 ft. 9 ft. 9 ft.		3 ft. 3 ft.	
E	AST WE									'	
A B	TO TO TO	A B C	6 ft. 6 ft. 24 ft.	22 ft. 18 ft. 34 ft.	22 ft. 18 ft. 34 ft.	17 psf. 14 psf. 14 psf.	16 psf. 16 psf. 16 psf.	9 ft. 9 ft. 9 ft.		3 ft.	

LA	TERA	LL(DADS						
	2ND LEVEL NORTH SOUTH		WIND LOAD ON WALL	WIND LOAD ON ROOF	TOTAL WIND LOAD	LEVEL FOR REDIST.	VERTICAL REDIST. V/Cvx V	MAXIMUM DESIGN WIND LOAD	SEISMIC LOAD
1	ТО	2	129 plf.	31 plf.	160 plf.	2 OF 2	1.122	176 plf.	123 plf.
2	TO	3	64 plf.	55 plf.	119 plf.	2 OF 2	1.122	135 pif.	112 plf.
3	TO	4	64 plf.	55 plf.	119 plf.	2 OF 2	1.122	135 plf.	112 plf.
4	то	5	129 plf.	31 plf.	160 plf.	2 OF 2	1.122	176 plf.	123 plf.
	AST WES								
A	ТО	C	113 plf.	24 plf.	136 plf.	2 OF 2	1.122	152 plf.	123 plf.
A	TO	C	113 plf.	24 plf.	136 plf.	2 OF 2	1.122	152 plf.	123 plf.
	LEVEL NORTH SOUTH		WIND LOAD ON WALL	WIND LOAD ON ROOF	TOTAL WIND LOAD	LEVEL FOR REDIST.	VERTICAL REDIST. V/Cvx V	MAXIMUM DESIGN WIND LOAD	SEISMIC LOAD
	TO	1	72 plf.	24 plf.	96 plf.	1 OF 1	1.000	112 plf.	110 plf.
1	TO	2	137 plf.	•	137 plf.	1 OF 2	0.792	153 plf.	102 plf.
2	TO	3	137 plf.		137 plf.	1 OF 2	0.792	153 plf.	91 plf.
3	TO	4	137 plf.		137 plf.	1 OF 2	0.792	153 plf.	91 plf.
4	TO	5	137 plf.	24 plf.	160 plf.	1 OF 2	0.792	176 plf.	102 plf.
E	AST WES	T				***************************************		i	<u>'</u>
	TO	A	72 plf.	24 plf.	96 plf.	1 OF 1	1.000	112 plf.	90 plf.
Α	TO	в	137 plf.		137 plf.	1 OF 2	0.792	153 plf.	71 plf.
В	то	С	137 plf.		137 plf.	1 OF 2	0.792	153 plf.	98 plf.

WORST CASES	SPAN	DEPTH	SHEAR		SPAN	DEPTH	CHORD TEN	ISION
NS) 2ND LEVEL =	17 ft.	27 ft.	55 plf.		17 ft.	27 ft.	236 lbs.	
EW) 2ND LEVEL =	27 ft.	28 ft.	73 plf.		27 ft.	28 ft.	495 lbs.	
NS) 1ST LEVEL =	17 ft.	36 ft.	42 plf.		17 ft.	36 ft.	177 lbs.	
EW) 1ST LEVEL =	24 ft.	34 ft.	54 plf.		24 ft.	34 ft.	323 lbs.	
ROOF TYPICAL	USE 1/2" (15/3	2") CDX PLYV	VOOD WITH 8	d @ 6",6",12" (D.C.	UNBLOCKED	180 plf.	(OK)
LOOR TYPICAL	USE 3/4" CDX	PLYWOOD W	1TH 8d @ 6",6	",10" o.c.		UNBLOCKED	180 plf.	(OK)
BLOCKING	NAIL FRIEZE E	BLOCKING WI	TH SIMPSON	A35, LS50 OR	RBC @ 24" o.	C.	283 plf.	(OK)
OP PLATE TYPICAL	SPLICE W/	10)		NAILS EACH S			1570 lbs.	(OK)
	WHERE TOP F		NOT BE SPLIC	ED BY OVER	LAPPING, USE	LSTA36	1705 lbs.	
OP PLATE SPECIAL	SPLICE WITH:	MSTI36 W/	48) 16d	@ LINES	NA	ONLY	3410 lbs.	(OK)

	PANEL NUM	BER							TYPE		
	L1	L2	L3	L4	L5	L6	L7	SUM(L)	OF		
LINE #	LENGTH OF	LENGTH OF SHEARWALL									
1	3.5 ft.	3.5 ft.						7.0 ft.	WALLPIE		
2	14.0 ft.							14.0 ft.	SHEARWA		
3	22.0 ft.							22.0 ft.	SHEARWAI		
4	14.0 ft.							14.0 ft.	SHEARWAI		
5	3.5 ft.	3.5 ft.						7.0 ft.	WALL PIE		
Α	4.0 ft.	4.0 ft.						8,0 ft.	SHEARWAI		
C	12.0 ft.	6.0 ft.						18.0 ft.	SHEARWAI		

	PANEL NUM	BER							TYPE
	L1	L2	L3	L4	L5	L6	L7	SUM(L)	OF
LINE#	LENGTH OF	SHEARWALL							WALL
1	7.5 ft.	10.0 ft.	***************************************	******		***************************************		17.5 ft.	SHEARWA
2	13.0 ft.	12.0 ft.						25.0 ft.	SHEARWA
3	24.0 ft.							24.0 ft.	SHEARWA
4	13.0 ft.	12.0 ft.						25.0 ft.	SHEARWA
5	7.5 ft.	10.0 ft.						17.5 ft.	SHEARWA
Α	5.0 ft.	5.0 ft.						10.0 ft.	SHEARWA
В	1.8 ft.	1.8 ft.						3.5 ft.	STEELSV
C	5.0 ft.	10.0 ft.		•				15.0 ft.	SHEARWA

CHECKS	HE SONTROLS	AR WALLS 3RD LVL. WIND LOAD	(2ND LE) 3RD LVL. SEISMIC LOAD	VEL) TRIBUTARY WIDTH	2ND LEVEL WIND LOAD	2ND LEVEL SEISMIC LOAD	MAXIMUM DESIGN LOAD	TOTAL LENGTH OF WALL	UNIT SHEAR	USE SHEAR
1	₩ĺ			9 ft.	1497 lbs.	1169 lbs.	1500 lbs.	7 ft.	214 plf.	4
2	W			15 ft.	2310 lbs.	1971 lbs.	1500 lbs.	14 ft.	107 plf.	4
3	s			12 ft.	1625 lbs.	1749 lbs.	1749 lbs.	22 ft.	79 plf.	4
4	W			15 ft.	2310 lbs.	1971 lbs.	2310 lbs.	14 ft.	165 plf.	4
5	W			9 ft.	1497 lbs.	1169 lbs.	1497 lbs.	7 ft.	214 plf.	4
Α	w			14 ft.	2055 lbs.	1804 lbs.	2055 lbs.	8 ft.	257 plf.	4
C	w			14 ft.	2055 lbs.	1987 lbs.	2055 lbs.	18 ft.	137 pif.	4

TOTAL BASE SHEAR N/S = 9240 lbs. TOTAL TOTAL BASE SHEAR E/W ≈ 4110 lbs. TOTAL

TOTAL RESISTANCE = 16640 TOTAL RESISTANCE = 6760 OVERALL FACTOR OF SAFETY N/S = 1.80 OVERALL FACTOR OF SAFETY E/W= 1.64

	(ç)		2ND LVL.		w ·	1ST LEVEL		TOTAL		
LINE #	CONTROL	2ND LVL. WIND LOAD	SEISMIC LOAD	TRIBUTARY WIDTH	1ST LEVEL WIND LOAD	SEISMIC LOAD	MAXIMUM DESIGN LOAD	LENGTH OF WALL	UNIT SHEAR (v)	USE SHEAR WALL TYPE
1	Ŵ	1497 lbs.	1169 lbs.	15 ft.	1971 lbs.	1883 lbs.	3468 lbs.	18 ft.	222 plf.	4
2	W.	2310 lbs.	1971 lbs.	15 ft.	2215 lbs.	1925 lbs.	4525 lbs.	25 ft.	188 plf.	4
3	W	1625 lbs.	1749 lbs.	12 ft.	1833 lbs.	1589 lbs.	3458 lbs.	24 ft.	144 plf.	4
4	W	2310 lbs.	1971 lbs.	15 ft.	2415 lbs.	1925 lbs.	4725 lbs.	25 ft.	196 plf.	- 4
5	W	1497 lbs.	1169 lbs.	9 ft.	1499 lbs.	1222 lbs.	2996 lbs.	18 ft.	192 plf.	4
Α	W	2055 lbs.	1804 lbs.	9 ft.	1130 lbs.	956 lbs.	3185 lbs.	10 ft.	319 plf.	5
В	W			15 ft.	2291 lbs.	1464 lbs.	2291 lbs.	4 ft.	655 plf.	21
C	W	2055 lbs.	1987 lbs.	12 ft.	1833 lbs.	1486 lbs.	3888 lbs.	15 ft.	311 plf.	5

TOTAL BASE SHEAR N/S = 19173 lbs. TOTAL BASE SHEAR E/W = 9365 lbs. TOTAL RESISTANCE = 28340
TOTAL RESISTANCE = 14840

OVERALL FACTOR OF SAFETY N/S = 1.48

OVERALL FACTOR OF SAFETY E/W= 1.58

	LENGTH OF	SHEAR AT	OVER-			DEAD LOAD		22 - Verse 1794 17817, Augustu	USE
LINE #	SHORTEST PANEL	SHORTEST PANEL	TURNING MOMENT	(.614Sds)D (w)	(.614Sds)D AT ENDS (P)	RESISTING MOMENT	UNBAL. MOMENT	UPLIFT FORCE	HOLDOWN TYPE
1	3.5 ft.	750 lbs.	6000'#	82	225	1290'#	4710'#	1591 bs.	MSTC40
2	14.0 ft.	1500 lbs.	12000'#	82	225	11184'#	816'#	61 lbs.	(OK)
3	22.0 ft.	1749 lbs.	13990'#	82	225	24784'#	-10794'#	-503 lbs.	(OK)
4	14.0 ft.	2310 lbs.	18479'#	82	225	11184'#	7295'#	542 lbs.	MSTC40
5	3.5 ft.	749 lbs.	5989'#	82	225	1290'#	4699'#	1588 lbs.	MSTC40
Α	4.0 ft.	1027 lbs.	8220'#	82	225	1557'#	6663'#	1926 lbs.	MSTC40
C	6.0 ft.	822 lbs.	6576'#	121	332	4169'#	2407'#	441 lbs.	MSTC40

MINIMUM FACTOR OF SAFETY = 1.60

AVERAGE FACTOR OF SAFETY = 2.34

CHECK OV	ERTURNIN	G (IST LE	VEL)			in et de person			
LINE #	LENGTH OF SHORTEST PANEL	SHEAR AT SHORTEST PANEL	OVER- TURNING MOMENT	(.614Sds)D (w)	(.614Sds)D AT ENDS (P)	DEAD LOAD RESISTING MOMENT	UNBAL. MOMENT	UPLIFT FORCE	USE HOLDOWN TYPE
1	7.5 ft.	1665 lbs.	14982'#	155	425	7540'#	7441'#	1069 lbs.	HDU2
2	12.0 ft.	2255 lbs.	20297'#	129	355	13550'#	6747'#	589 lbs.	HDU2
3	24,0 ft.	3458 lbs.	31123'#	155	425	54755'#	-23632'#	-1007 lbs.	(OK)
4	12.0 ft.	2355 lbs.	21196'#	129	355	13550'#	7646'#	667 lbs.	HDU2
5	7.5 ft.	1438 lbs.	12944'#	155	425	7540'#	5403'#	776 lbs.	HDU2
Α	5.0 ft.	1593 lbs.	14334'#	123	337	3219'#	11115'#	2492 lbs.	HDU2
В	1.8 ft.	1146 lbs.	10311'#	89	245	566'#	9745'#	8054 lbs.	S.W.
C	5.0 ft.	1555 lbs.	13997'#	140	386	3687'#	10310'#	2312 lbs.	HDU2

MINIMUM FACTOR OF SAFETY = 1.41

AVERAGE FACTOR OF SAFETY = 2.25

CHECK CO	LLECTORS	(2ND LEV				060000	
LINE#	TOTAL SHEAR IN LINE	SHEAR IN COLLECT.	FOR IRREGULAR	TENSION IN COLLECT.	USE	MEMBER SPLICE	TENSION STRAP
1	1500 lbs.	30%	1.25	563 lbs.	TOP PLATES		iotika <u>e</u> gist
2	1500 lbs.	50%	1.25	938 lbs.	TOP PLATES	A35 @ 24"	
3	1749 lbs.		1.25		TOP PLATES	0.00	de Company
4	2310 lbs.	50%	1.25	1444 lbs.	TOP PLATES	A35 @ 24"	800000000
5	1497 lbs.	30%	1.25	562 lbs.	TOP PLATES		
A	2055 lbs.	50%	1.25	1284 lbs.	TOP PLATES	LSTA36	
С	2466 lbs.	30%	1.25	925 lbs.	TOP PLATES	LSTA36	

MINIMUM FACTOR OF SAFETY = 1.18

AVERAGE FACTOR OF SAFETY = 2.04

LINE#	TOTAL SHEAR IN LINE	SHEAR IN COLLECT.	FOR IRREGULAR	TENSION IN COLLECT.	USE	MEMBER SPLICE	TENSION STRAP
1	3884 lbs.	30%	1.25	1457 lbs.	TOP PLATES	and a rest to be a real problem.	
2	4698 lbs.	25%	1.25	1468 lbs.	TOP PLATES		
3 .	3458 lbs.		1.25		TOP PLATES		2016 8 30 4
4	4906 lbs.	25%	1.25	1533 lbs.	TOP PLATES		
5	3356 lbs.	30%	1.25	1258 lbs.	TOP PLATES		
A	3185 lbs.	30%	1.25	1195 lbs.	TOP PLATES		
В	2291 lbs.	40%	1.25	1146 lbs.	TOP PLATES		
С	4666 lbs.	25%	1.25	1458 lbs.	TOP PLATES		

MINIMUM FACTOR OF SAFETY = 1.11

AVERAGE FACTOR OF SAFETY = 1.27

		SHEAR	WALLSC	HEDULE				
	SHEAR WALL		FIELD	16d SINKER	MUD	5/8" DIA.	PLTP4	GOOD FOR
	MATERIAL **	NAILING	NAILING	SILL NAIL	SILL	A. BOLTS	A35 OR LS50	
FULLSTR	ESS SHEAR WA	LLS FOR H/W<2:1						***************************************
4	1/2" CDX PL)	/WOOD W/8d AT 6" o.c.	12 in.	7 in.	2 X	48 in.	24 in.	260 plf.
5	1/2" CDX PL\	/WOOD W/8d AT 4" o.c.	12 in.	5 in.	2 X	40 in.	16 in.	350 plf.
OPTION	EDGE NAIL WITH SILL NAIL, A35 AND A.B. PER SCHED. 1	NOMINAL SILL EDGE NAIL WITH A.B. PER SCHED OPTION 2	. NAIL					
21	SIMPSON ST RF SIMPSON ST	RONG-WALL EEL STRONG WALL SSW21	X 10 RF	TYPE RAISED FLOOR	HOLDOWN 1"	5/8" A.B. -		GOOD FOR 889 plf.
ON CONCR	erte						******	·
21		EEL STRONG WALL SSW21	X 10	ON CONCRETE	1"	_		1740 plf.
**		OOD SHEAR WALL VALUES ARE			•	ND COMMON N	IAILS	
	OR GALVANIZI	ED BOX NAILS. IF HEM FIR OR	NON GALVANIZ	ED SINKER NAILS	S ARE USED, T	HE PLYWOOD		
		JLD BE INCREASED BY 20%		(ie. 6" o.c. BECO	•			
		Y BE USED INSTEAD OF CDX F						į
005	HEIGHTS SHO	WN FOR STRONG WALLS ARE	MAXIMUMS, SI	HORTER WALLS A	ARE STRONGE	R.		•

15 (6)		2ND LEVEL HOLD	OOWNS		
TYPE	SIMPSON PRODUCT	VALUES BASED ON 9 GAU	GE "SINKER NAILS"	•	-GF
MSTC40	MSTC40 OF CMST 14 x 48" V	NTH (28)16d SINKERS TO DBL. ST	OD ABOVE & BEFOR	18° CLEAR SPAN	2695 lbs.

			1ST LEVEL HOLDOWNS		
	TYPE	SIMPSON PRODUCT	VALUES BASED ON 9 GAUGE "SINKER NAILS"	END DIST.	-GF
1	HDU2	HDU2 W/ (6)SDS 1/4 X 3" F	BOLTS TO DBL. STUD AND SB5/8 X 24 EMBED. 18"	5"	3075 lbs.
il .			•		į.

	60.000	COLLECTOR STRA	NPS	
	TYPE	OPTION SIMPSON PRODUCT VALUES BASED	ON 9 GAUGE "SINKER NAILS" GF	\neg
1	LSTA36	CS16 LSTA36 OR CS16 X 12'-0" WITH 12) 8d TO S.W. ANI	D 12)8d TO BLOCKING 1705 I	bs.
AL	TERNATES	(MAY BE SUBSTITUTED FOR COLLECTORS WITH SAME NUMBER	IN LEFT COLUMN)	
1	HDU2	HDU2 W/ (6)SDS 1/4 X 3" BOLTS TO DBL. 2X AND 5/8" THREDED R	OD 3075 I	bs.

SHEAR TRANSFER NOTES

- 1) ALL SHEARWALLS MUST RUN UP TO THE ROOF OR FLOOR DIAPHRAGM WHICH LOADS THEM. THIS MEANS THAT ALL UPPER LEVEL INTERIOR SHEARWALLS MUST RUN UP THROUGH THE ATTIC TO THE ROOF.
- 2) ALL SHEARWALLS ARE TO BE EDGE NAILED TO THE TOP PLATES EVEN IF THE PLYWOOD IS CONTINUOUS AT THIS LOCATION
- 3) IN EXISTING CONCRETE, 5/8" DIA. A.B.'S MAY BE REPLACED WITH SIMPSON 5/8" DIA. TITEN HD ANCHORS, OR APPROVED EQUAL EMBEDDED 4-1/8" IN CONCRETE. (PER ICC-ES-ESR 2713)
- 4) A35'S ARE NOT REQUIRED AT THE FOUNDATION LEVEL BLOCKING IF THE PLYWOOD IS CONTINUOUS TO THE MUD SILL.
- 5) FRIEZE BLOCKS MAY BE DRILLED FOR VENTING WITH 2" DIAMETER HOLES AT 6" o.c. OR EVERY FOURTH BLOCK
 MAY BE REPLACED WITH A SCREEN VENT. ALL BLOCKS TO BE CONNECTED TO TOP PLATES PER SHEAR TRANSFER DETAILS.
- 6) 1/2" CDX ROOF PLYWOOD MUST BE EDGE NAILED TO THE FRIEZE BLOCK WITH 8d AT 6" MIN. U.N.O.
- 7) SPACING OF NAILS, BOLTS AND A35'S MAY BE AVERAGED OVER SEVERAL SPACES. NAILING REQUIREMENTS DO NOT APPLY TO AREAS UNDER WINDOWS. ETC. WHICH ARE NOT CONSIDERED SHEARWALLS.
- 8) BLOCK ALL EDGES OF PLYWOOD SHEAR WALL PANELS AND EDGE NAIL WITH COMMON OR GALVANIZED BOX NAILS.
- 9) PROVIDE 1/2" SPACE BETWEEN PLYWOOD SHEARWALL AND CONCRETE AT MUD SILL. ALL NAILS INTO PRESSURE TREATED MATERIAL TO BE GALVANIZED.
- 10) ORIENTED STRAND BOARD MAY BE USED FOR ROOF, FLOOR AND WALL PANELS INSTEAD OF PLYWOOD.

 (WITH SAME OR GREATER PANEL INDEX.) (STRUCT 1 RATED O.S.B. IS EQUAL TO STRUCT 1 RATED PLYWOOD)
- 11) INSTALL 5/8" DIA. ANCHOR BOLTS WITH SIMPSON BPS 5/8-3 BEARING PLATE WASHERS WITH CUT WASHERS.
- 12) INSTALL PLYWOOD ROOF AND FLOOR SHEATHING WITH FACE GRAIN ACROSS THE SUPPORTING MEMBERS. ALLOW 1/16" SPACE BETWEEN SHEETS FOR EXPANSION.
- 13) HOLDOWN HARDWARE TO BE SECURED IN PLACE PRIOR TO THE CONCRETE POUR.

HDU HOLDOWNS

- 14) INSTALL HDU'S WITH SIMPSON SDS 1/4 X 3 SELF TAPING LAG SCREWS TO DOUBLE STUDS, USE SIMPSON BOLT SPECIFIED.
- 15) HOLDOWN SHOULD BE INSTALLED WITH 1/8" MIN. SPACE TO SILL TO ALLOW FOR BOLT PRETENSIONING. (24" MAX.)
- 16) AT PONY WALLS, BOLT SHOULD BE EXTENDED WITH THREADED RODS WITH AN APPROVED COUPLING NUT SO HOLDOWN CAN BE INSTALLED ON WALL ABOVE.
- 17) PROVIDE 3" CLEAR FROM SOIL TO HOLDOWN BOLTS. (DEEPEN FOOTING WHERE NECESSARY)

STRAPS

- 18) STRAPS SHOULD BE INSTALLED OVER THE PLYWOOD. PLYWOOD SHOULD NOT BE NOTCHED AROUND THE STRAP.
- 19) STRAPS MAY BE INSTALLED TO DOUBLE STUDS WITH 16d SINKER NAILS ONLY. THE TWO STUDS SHOULD BE NAILED TOGETHER WITH (12)16d NAILS. DOUBLE STUDS MUST BE ALIGNED WITH STRAP SO THAT NAILS ARE 3/8" MIN. FROM EDGE OF STUD OR PRE-DRILL HOLES AND ANGLE NAILS TO PREVENT SPLITTING.
- 20) CS-16 STRAPS MAY BE SUBSTITUTED FOR LSTA STRAPS OF THE SAME LENGTH.
- 5) BOLTS NOT USED TO RESIST UPLIFT MAY BE INSTALLED USING SIMPSON SET22 WITH A MINIMUM EMBEDMENT OF 4"

DOWELS

6) EPOXY USED FOR MINOR USES MAY BE SIMPSON SET22 OR EQUAL INSTALLED WITHOUT SPECIAL INSPECTION PER ESR 2508.

A COPY OF THIS PAGE SHOULD BE ATTACHED TO THE PLANS

Sds =

BEAMS WITH OVERTURNING FORCES FROM SHEAR WALLS

17,572192

2013 C.B.C.

LOAD CASE (12-13)

(1.2+.2XSds) D + .5 L + (W or OMEGA E)

1.40 D + .5 L + (W or OMEGA E)

(WITHOUT ROOF LIVE LOAD)

(.9-.2* Sds) D + (W or OMEGA E) 1.02 0.70 D + (W or OMEGA E)

- 1) LOAD DURATION FACTOR IS 1.33 FOR SHORT TERM LOADS DUE TO SEIMIC FORCES.
- 2) LOADS HAVE BEEN APPLIED AS DOWNWORD FORCES FOR SHEAR AND MOMENT AS THIS IS THE CONTROLLING CONDITION.

BEAMFUNDS	RAWAIN	MOVE	KKAN	CHI	N			CONTROL						
SPAN	personal Pillar et appropriete.		16.0	5 5 1 Mr 2000's	1.2.1.11 1.3.million	STRESS FA	CTORS		(Cx)		1)	5 1/4 x	11 1/4	•
UNIFORM LOAD	18 plf. 4	-	345	plf.			CE FACTOR		(Cm)	1.00				
POINT LOAD @	.44 Span			•	(P1)	LOAD DURA	ATION FACT.		(Cd)	1.25	P	ARALL.	AM PSL	
	.90 Span			lbs.	-	REP. USE F.			(Cr)	1.00	Fv=	range transmission (artifactors than	x (Cd) =	363 psi.
POINT LOAD @	.13 Span		0	lbs.	(P3)	VOLUME FA	CTOR		(Cv)	1.00	Fb=		x (Cx) =	3625 psi.
DIST. LOAD TO			175	plf.	(w2)				' - '		1 E=	2000000		
TRIANGULAR W		100	0	lbs.	(W)	LIVE LOAD	REDUCTION		_	NA	1		OF SAFET	Y =1.19
CHECK WIT	H SEISN	AIC LO)ADIN	G F	ROM	WALLLI	NE	G						
, C			DEAD		LIVE	SEISMIC	TOTAL							
			LOAD		LOAD	LOAD	LOAD							
UNIFORM LOAD	18 plf. +	- 250	205		140		345	plf.	(w)		<u></u>			
II.	.44 Span		599		399	0	998	lbs.	(P1)		Fv =	290	x (Cd) =	387 psi.
11	.50 Span		0		0	2459	2459	lbs.	(P2)		Fb=	2900	x (Cx) =	6572 psi.
POINT LOAD @	.13 Span		0		0	0	0	lbs.	(P3)		E =	2000000	psi.	
DIST. LOAD TO		2 25	70		105		175	plf.	(w2)		MINIMUI	M FACTOR	OF SAFETY	′ =1.12
TRIANGULAR W			0		0		0	lbs.	(W)					
SHEAR (V) =		99 lbs		AREA	REQU	RED =	22.11	in.²			A =	59.06	in.2	501% (OK)
MOMENT (M) =	284					QUIRED =	51.91	in. ³			S =	110.74	in.3	1200% (OK)
		1.2	+.2\$ds	+	.5 L.L	+ Em					=	622.92	in.4	112% (OK)
REACTION LEFT	(R1) =		3510		959	1230	5699	lbs.			DEFLECT.=	0.96	in. = L/	201
REACTION RIGHT	r (R2) =		3018		728	1230	4976	lbs.			STRESS FACT	ORS	(Cx)	
		x.9	2Sds		J-11-12-1	+ Em					WET SERVICE	FACTOR	(Cm)	1.00
i.	(R1) =		2038			1230	809	lbs.		NEGATIVE	LOAD DURATION	ON FACT.	(Cd)	1.33
UPLIFT RIGHT (R2) =		1752_			1230	523	lbs.		IS UPWARD	ULTIMATE LOA	D FACT.	(Cu)	1.70
			[]	MAX	UPLIF	T =	0				VOLUME FACT	OR	(Cv)	1.00

BEAM UNDER WA	IL OVE	RIJ Y	ING.	ROO	M	5 (50 ±5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5							8
SPAN		12.0	ft.	(1)	STRESS FACTO	ORS		(Cx)		1)	3 1/2 x	11 1/4	
UNIFORM LOAD 12 pli	. +	520	plf.	(w)	WET SERVICE	FACTOR	(Cm)	1.00	13/60/60/60	9 5 5 9		
POINT LOAD @ .33 Spa	n <u> </u>	0	lbs.	(P1)	LOAD DURATION	ON FACT.	((Cd)	1.25	l a constant	ARALL	AM PSL	
POINT LOAD @ .90 Spa	n <u> </u>	0	lbs.	(P2)	REP. USE FACT	ror .	- 1	(Cr)	1.00	Fv =	290	x (Cd) =	363 psi.
POINT LOAD @ .13 Spa		0	lbs.	(P3)	VOLUME FACT	OR	((Cv)	1.00	Fb=	2900	x(Cx) =	3625 psi.
DIST. LOAD TO .20 Spa		0	plf.	(w2)				-] E=	2000000	psi.	
			lbs.		LIVE LOAD REI			-	NA	MINIMU	M FACTOR	OF SAFET	Y =1.87
CHECK WITH SEIS	MIC LO	ADIN	IG FI	ROM	WALLLINE		С						
		DEAD		LIVE	SEISMIC	TOTAL							
		LOAD	į	LOAD	<u>LOAD</u>	LOAD							
UNIFORM LOAD 12 plf	+	280		240		520	plf.	(w)					
POINT LOAD @ .75 Spai	1	0		0	2459	2459	lbs.	(P1)		Fv≃	290	x (Cd) =	387 psi.
POINT LOAD @ .90 Spar	1	0		0	0	0	lbs.	(P2)		Fb≃	2900	x(Cx) =	6572 psi.
POINT LOAD @ .13 Spar		0		0	0	0	ibs.	(P3)		E =	2000000	psi.	
DIST. LOAD TO .20 Spar		0		0		0	plf.	(w2)		MINIMUI	M FACTOR	OF SAFETY	/ =1.92
TRIANGULAR W .00 Spar		0		0		0	lbs.	(W)					
II '''	021 lbs		AREA	REQU	IRED =	19.48	in.²			A =	39.38	in.2	379% (OK)
$\frac{MOMENT(M) = 15}{15}$	064 ft.lbs.	max 3	SECTION	ON RE	QUIRED =	27.51	in. ³			S =	73.83	in.3	1510% (OK)
	1.2+	.2Sds	+	.5 LL	+ Em					=	415.28	in.4	192% (OK)
REACTION LEFT (R1)	=	2457		720	615	3792	lbs.			DEFLECT.≃	0.42	in. = L/	346
REACTION RIGHT (R2) :	=	2457		720	1844	5021	ibs.			STRESS FACT	ORS	(Cx)	
	х.9 -	.2Sds			+ Em					WET SERVICE	FACTOR	(Cm)	1.00
UPLIFT LEFT (R1) =		1427			615	812	lbs.		NEGATIVE	LOAD DURATION	ON FACT.	(Cd)	1.33
UPLIFT RIGHT (R2) =		1427_			1844	<u>-418</u>	lbs.		IS UPWARD	ULTIMATE LOA	D FACT.	(Cu)	1.70
		[MAX L	JPLIF	T =	-418				VOLUME FACT	OR	(Cv)	1.00

E 1

SUMMARY			2013 C.I	3.C.		17111,934
GRAVITY LOADS	ROOF:		100	27. ************************************	FLOOR:	manus - Cara about of 63 Trans of the country of default commercial
	ROOF LIVE L	OAD		18 psf.	FLOOR LIVE LOAD	40 psf.
	CEILING LIVE	LOAD		20 psf	FLOOR DEAD LOAD	14 psf.
			RENT WITH ROC	,	TOTAL FLOOR LOAD	54 psf.
	ROOF DEAD			11 psf.	1	
	TOTAL ROOF			29 psf.	LINE LOAD AT DEOKO	
	CEILING DEA			6 psf.	LIVE LOAD AT DECKS	60 psf.
	TOTAL ROOF			17 psf. 35 psf.	1	
	OTHER	y chicing cor	iu.	0 psf.]	
					-	
FOUNDATION DESIGN BA	SED ON			3 C.B.C. FOR CL	_ASS 5 SOILS	
		BEARING PR	ESSURE 150	O PSF		
WIND LOADS						
WIND SPEED		110	mph.			
EXPOSURE FACTOR		Ċ			A.S.D. WALL PRESSURE	16.08 psf.
RISK CATEGORY		2			A.S.D. ROOF PRESSURE =	7.86 psf.
SEISMIC LOADS						
Ss= 1.52		Sms	s= 1.52		Sds= 1.02	
S1 = 0.60		Sm1	= 0.90		Sd1 = 0.60	
SITE CLASS			D			
OCCUPANCY CATEGORY			H H			
DESIGN CATEGORY			D			
MPORTANCE FACTOR		(I) (X)	1	FOR SEISMIC		
REDUNDANCE FACTOR	D.	(p)	1.3			
REDISTRUBUTION FACTOI BASIC SEISMIC FORCE RES		(F)	1 CHEAD W	ALL C		
DESIGN BASE SHEAR	11616 DNII16IC	ZIVI	SHEAR W/ 16573	4LLS		
RESPONSE FACTOR		(R)	6.5			
	(A.S.D.)	UV	0.142			
ANALYSIS PROCEDURE	(/ 1.0.0.)			DRCE PROCEDUI	RE SIMPLIFIED MET	THOD
SPECIAL LOADS			0	NA	IRREGULAR STA	
			-			

A COPY OF THIS PAGE SHOULD BE ATTACHED TO THE PLANS